32-bit Microcontroller

CMOS

FR60 Lite MB91345 Series

MB91F345B/F346B

■ DESCRIPTION

The MB91345 series is the microcontrollers based on 32-bit high-perform RISC-CPU while integrating a variety of I/O resources for embedded control applications which require high-performance, high-speed CPU processing.

It is suitable for the embedded control in digital home appliances or audio visual equipment, requiring high-performance CPU processing power.

This product compactly integrates a variety of peripheral functions for single chip and is FR60* applicable to faster-speed application.

*: FR is the abbreviation of FUJITSU RISC controller.

■ FEATURE

- FR CPU
 - 32-bit RISC, load/store architecture, with a five-stage pipeline
 - Maximum operating frequency : 50 MHz [PLL used : original oscillation 12.5 MHz]
 - 16-bit fixed length instruction (basic instructions); 1 instruction per cycle
 - Instruction set optimized for embedded applications: Memory-to-Memory transfer, bit manipulation, barrel shift instructions
 - Instructions adapted for high-level programming languages : Function entry/exit instructions, multiple-register load/store instructions
 - Register interlock function : Facilitating coding in assembles

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page URL: http://edevice.fujitsu.com/micom/en-support/

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

• On-chip multiplier supported at instruction level

Signed 32-bit multiplication : 5 cycles Signed 16-bit multiplication : 3 cycles

- Interrupt (PC, PS save) : 6 cycles, 16 priority levels
- · Harvard architecture allowing program access and data access to be executed simultaneously
- Instruction set compatible with FR family

Internal memory

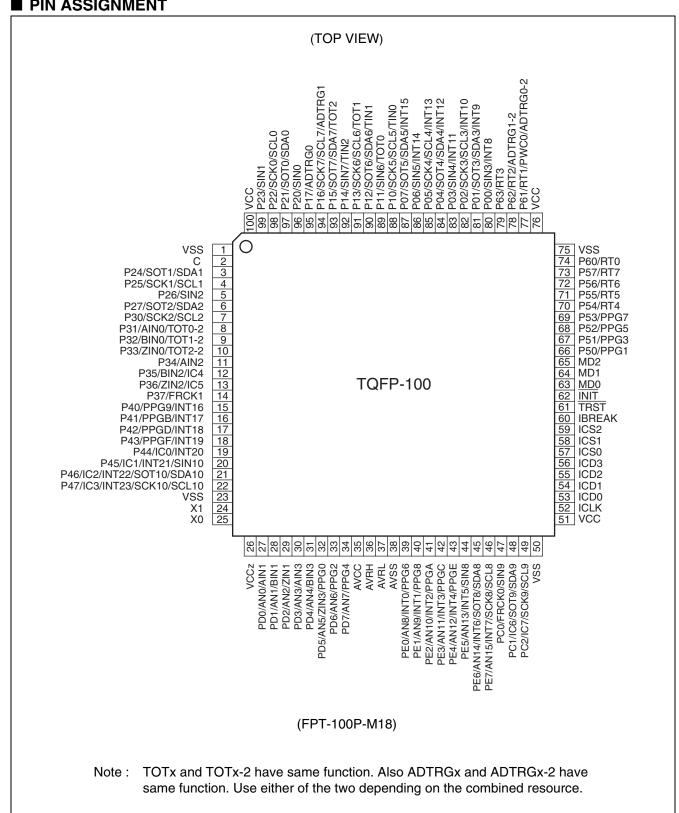
	Flash	D-bus RAM	F-bus RAM	
MB91F345B	512 Kbytes	24 Kbytes	8 Kbytes	
MB91F346B	1 Mbyte	24 Kbytes	8 Kbytes	

• DMAC (DMA Controller)

- 5 channels
- Two transfer factors (internal peripheral / software)
- Addressing mode: 20/24-bit full-address selection (increment/decrement/fixed)
- Transfer modes (burst transfer/step transfer/and block transfer)
- Selectable transfer data sizes: 8, 16, or 32 bits
- Bit search module (for REALOS)

Search for the position of the bit I/O-changed first in one word from the MSB

- Reload timer: 3 channels (including 1channel for REALOS)
 - 16-bit timer
 - The internal clock is optional from 2/8/32 division
- Multi function serial interface
 - 11 channels
 - Full duplex double buffer
 - 2 channels out of 11 channels with 16-byte FIFO
 - Capable of selecting communication mode: asynchronous (Start-Stop synchronous) communication, clock synchronous communication (Max 8.25 Mbps), I²C* standard mode (Max 100 kbps), high-speed mode (Max 400 kbps)
 - Parity on/off selectable
 - · Baud rate generator per channel
 - Abundant error detection functions are provided (Parity, frame, and overrun)
 - External clock can be used as transfer clock
 - ch.0, ch.1, ch.2, and ch.10 is tolerant of 5 V
- Interrupt controller
 - A total of 24 external interrupt lines (external interrupt pins INT23 to INT0)
 - Interrupt from internal peripheral
 - Programmable 16 priority levels
 - Available for wakeup from STOP mode


(Continued)

- A/D converter :
 - 10-bit resolution, 8 channels + 8 channels 2 unit
 - Successive approximation type: Conversion time: min. 1.2 μs (at 16 MHz)
 - Conversion mode (Shingle-shot conversion mode, scan conversion mode)
 - Startup source (software/external trigger)
- PPG timer : up to 16 channels (at 8 bits)
 - 8/16-bit PPG timer: 8 bits × 16 channels or 16 bits × 8 channels
 - The internal clock is optional from 1/4/16/64 division
- PWC timer : 1 channel

16-bit up counter 1 channel (1 input)

- Input capture and output compare: up to 8 channels (ch.0 to ch.3; 16-bit ICU, OCU, ch.4 to ch.7; 32-bit ICU, OCU)
 - 16-bit free-run timer × 1 channel + 16-bit input capture × 4 channels + 16-bit output compare × 4 channels
 - 32-bit free-run timer × 1 channel + 32-bit input capture × 4 channels + 32-bit output compare × 4 channels
- MIN/MAX/ABS
 - MIN/MAX/ABS is performed and the result is accumulated and added.
- Other interval timer and counter
 - 8/16-bit up down counter:
 - 8-bit × 4 channels or 16-bit × 2 channels
 - 16-bit timebase timer/watchdog timer
- I/O port
 - Max 71 ports
- Other features
 - Internal oscillation circuit as a clock source and PLL multiplier
 - INIT is prepared as a reset terminal
 - · Watchdog timer reset and software reset are also available
 - Stop and sleep mode supported as low-power-consumption modes
 - Gear function
 - Built-in time base timer
 - · Memory patch function
 - Package: TQFP-100
 - CMOS technology (0.18 μm)
 - Power supply voltage: 3.3 V ± 0.3 V (single power supply)
- *: Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

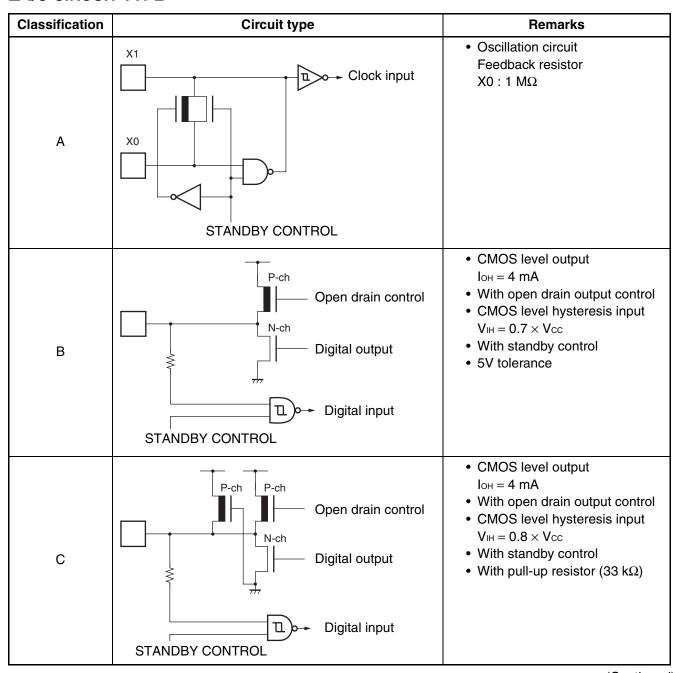
Pin No.	Pin name	I/O Circuit type*	Function
1	VSS	_	GND pin
2	С	_	Power stabilization capacitance pin
	P24		General-purpose I/O port
3	SOT1/ SDA1	В	Multi function serial 1 serial data output pins I ² C data I/O pins
	P25		General-purpose I/O port. Enabled in single-chip mode.
4	SCK1/ SCL1	В	Multi function serial 1 clock I/O pins I ² C clock I/O pins
5	P26	В	General-purpose I/O port. Enabled in single-chip mode.
5	SIN2	Ь	Multi function serial 2 serial data input pin
	P27		General-purpose I/O port. Enabled in single-chip mode.
6	SOT2/ SDA2	В	Multi function serial 2 serial data output pins I ² C data I/O pins
	P30		General-purpose I/O port. Enabled in single-chip mode.
7	SCK2/ SCL2	В	Multi function serial 2 clock I/O pins I ² C clock I/O pins
	P31		General-purpose I/O port. Enabled in single-chip mode.
8	AIN0	В	Up down counter input pin
	TOT0-2		Reload timer output pin
	P32		General-purpose I/O port. Enabled in single-chip mode.
9	BIN0	В	Up down counter input pin
	TOT1-2		Reload timer output pin
	P33		General-purpose I/O port. Enabled in single-chip mode.
10	ZIN0	В	Up down counter input pin
	TOT2-2		Reload timer output pin
11	P34	В	General-purpose I/O port. Enabled in single-chip mode.
11	AIN2	ם	Up down counter input pin
	P35		General-purpose I/O port. Enabled in single-chip mode.
12	BIN2	В	Up down counter input pin
	IC4		Input capture ICU 4 data sample input pin
	P36		General-purpose I/O port. Enabled in single-chip mode.
13	ZIN2	В	Up down counter input pin
	IC5		Input capture ICU 5 data sample input pin
14	P37	В	General-purpose I/O port. Enabled in single-chip mode.
17	FRCK1	5	32-bit free-run timer input pin

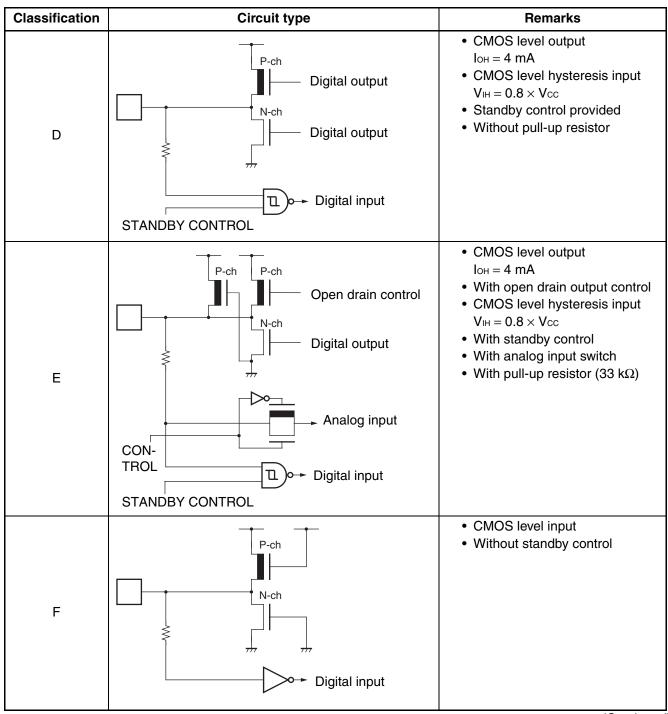
Pin No.	Pin name	I/O Circuit type*	Function
	P40		General-purpose I/O port
15	PPG9	В	PPG output pin
	INT16		External interrupt request 16 input pin
	P41		General-purpose I/O port
16	PPGB	В	PPG output pin
	INT17		External interrupt request 17 input pin
	P42		General-purpose I/O port
17	PPGD	В	PPG output pin
	INT18		External interrupt request 18 input pin
	P43		General-purpose I/O port
18	PPGF	В	PPG output pin
	INT19		External interrupt request 19 input pin
	P44		General-purpose I/O port
19	IC0	В	Input capture ICU0 data sample input pin
	INT20		External interrupt request 20 input pin
	P45		General-purpose I/O port
00	IC1		Input capture ICU1 data sample input pin
20	INT21	В	External interrupt request 21 input pin
	SIN10		Multi function serial 10 serial data input pin
	P46		General-purpose I/O port
	IC2		Input capture ICU2 data sample input pin
21	INT22	В	External interrupt request 22 input pin
	SOT10/ SDA10		Multi function serial 10 serial data output pins I ² C data I/O pins
	P47		General-purpose I/O port
	IC3		Input capture ICU3 data sample input pin
22	INT23	В	External interrupt request 23 input pin
	SCK10/ SCL10		Multi function serial 10 clock I/O pins I ² C clock I/O pins
23	VSS	_	GND pin
24	X1	Α	Main clock I/O pin
25	X0	Α	Main clock input pin
26	VCC	_	Power supply input pin (3.3 V)

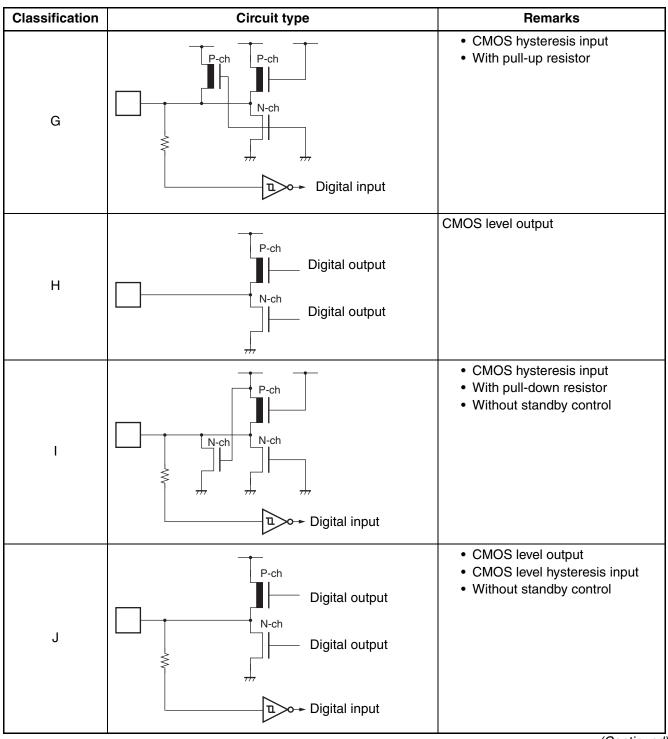
Pin No.	Pin name	I/O Circuit type*	Function
	PD0		General-purpose I/O port
27	AN0	E	A/D converter analog input pin
	AIN1		Up down counter input pin
	PD1		General-purpose I/O port
28	AN1	E	A/D converter analog input pin
	BIN1		Up down counter input pin
	PD2		General-purpose I/O port
29	AN2	E	A/D converter analog input pin
	ZIN1		Up down counter input pin
	PD3		General-purpose I/O port
30	AN3	E	A/D converter analog input pin
	AIN3		Up down counter input pin
	PD4		General-purpose I/O port
31	AN4	Е	A/D converter analog input pin
	BIN3		Up down counter input pin
	PD5		General-purpose I/O port
32	AN5	E	A/D converter analog input pin
32	ZIN3		Up down counter input pin
	PPG0		PPG output pin
	PD6		General-purpose I/O port
33	AN6	E	A/D converter analog input pin
	PPG2		PPG output pin
	PD7		General-purpose I/O port
34	AN7	E	A/D converter analog input pin
	PPG4		PPG output pin
35	AVCC	_	A/D converter analog power supply input pin
36	AVRH	_	A/D converter standard voltage input pin Be sure to turn on/off this power supply when potential of AVRH or more is applied to AVCC.
37	AVRL	_	A/D converter standard low voltage input pin
38	AVSS	_	A/D converter analog GND pin

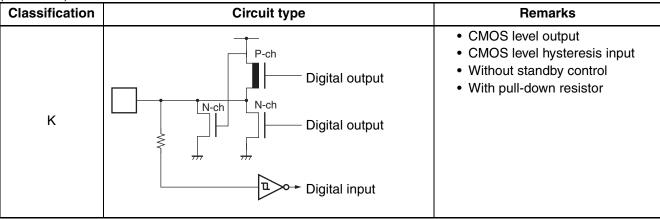
Pin No.	Pin name	I/O Circuit type*	Function
	PE0		General-purpose I/O port
39	AN8	E	A/D converter analog input pin
39	INT0		External interrupt request 0 input pin
	PPG6		PPG output pin
	PE1		General-purpose I/O port
40	AN9	E	A/D converter analog input pin
40	INT1		External interrupt request 1 input pin
	PPG8		PPG output pin
	PE2		General-purpose I/O port
4.4	AN10	_	A/D converter analog input pin
41	INT2	E	External interrupt request 2 input pin
	PPGA		PPG output pin
	PE3		General-purpose I/O port
40	AN11	-	A/D converter analog input pin
42	INT3	E	External interrupt request 3 input pin
	PPGC		PPG output pin
	PE4		General-purpose I/O port
40	AN12	-	A/D converter analog input pin
43	INT4	E	External interrupt request 4 input pin
	PPGE		PPG output pin
	PE5		General-purpose I/O port
4.4	AN13	_	A/D converter analog input pin
44	INT5	E	External interrupt request 5 input pin
	SIN8		Multi function serial 8 serial data input pin
	PE6		General-purpose I/O port
	AN14		A/D converter analog input pin
45	INT6	E	External interrupt request 6 input pin
	SOT8/ SDA8		Multi function serial 8 serial data output pins I ² C data I/O pins
	PE7		General-purpose I/O port
	AN15]	A/D converter analog input pin
46	INT7	E	External interrupt request 7 input pin
	SCK8/ SCL8		Multi function serial 8 clock I/O pins I ² C clock I/O pins (Continued)

Pin No.	Pin name	I/O Circuit type*	Function
	PC0		General-purpose I/O port
47	FRCK0	С	16-bit free-run timer input pin
	SIN9		Multi function serial 9 serial data input pin
	PC1		General-purpose I/O port
48	IC6	С	Input capture ICU6 data sample input pin
	SOT9/ SDA9	_	Multi function serial 9 serial data output pins I ² C data I/O pins
	PC2		General-purpose I/O port
49	IC7	С	Input capture ICU7 data sample input pin
.0	SCK9/ SCL9		Multi function serial 9 clock I/O pins I ² C clock I/O pins
50	VSS	_	GND pin
51	VCC	_	Power supply input pin (3.3 V)
52	ICLK	Н	Development tool clock pin
53	ICD0	K	Development tool data pin
54	ICD1	K	Development tool data pin
55	ICD2	K	Development tool data pin
56	ICD3	K	Development tool data pin
57	ICS0	J	Development tool status pin
58	ICS1	J	Development tool status pin
59	ICS2	J	Development tool status pin
60	IBREAK	I	Development tool break pin
61	TRST	G	Development tool reset pin
62	ĪNIT	G	Initial reset pin
63	MD0	F	Mode input pin
64	MD1	F	Mode input pin
65	MD2	F	Mode input pin
66	P50	С	General-purpose I/O port
00	PPG1	O	PPG output pin
67	P51	С	General-purpose I/O port
	PPG3		PPG output pin
68	P52	С	General-purpose I/O port
	PPG5		PPG output pin


Pin No.	Pin name	I/O Circuit type*	Function
69	P53	С	General-purpose I/O port
69	PPG7	C	PPG output pin
70	P54	С	General-purpose I/O port
70	RT4	C	Output compare OCU4 waveform output pin
71	P55	С	General-purpose I/O port
71	RT5	C	Output compare OCU5 waveform output pin
72	P56	<u> </u>	General-purpose I/O port
72	RT6	D	Output compare OCU6 waveform output pin
70	P57	D	General-purpose I/O port
73	RT7	D	Output compare OCU7 waveform output pin
74	P60		General-purpose I/O port
74	RT0	С	Output compare OCU0 waveform output pin
75	VSS	_	GND pin
76	VCC	_	Power supply input pin (3.3 V)
	P61	С	General-purpose I/O port
77	RT1		Output compare OCU1 waveform output pin
77	PWC0		PWC input pin
	ADTRG0-2		A/D converter trigger input pin
	P62		General-purpose I/O port
78	RT2	С	Output compare OCU2 waveform output pin
	ADTRG1-2		A/D converter trigger input pin
70	P63	0	General-purpose I/O port
79	RT3	С	Output compare OCU3 waveform output pin
	P00		General-purpose I/O port
80	SIN3	С	Multi function serial 3 serial data input pin
	INT8		External interrupt request 8 input pin
	P01		General-purpose I/O port
81	SOT3/ SDA3	С	Multi function serial 3 serial data output pins I ² C data I/O pins
	INT9		External interrupt request 9 input pin
	P02		General-purpose I/O port
82	SCK3/ SCL3	С	Multi function serial 3 clock I/O pins I ² C clock I/O pins
	INT10	<u> </u>	External interrupt request 10 input pin


Pin No.	Pin name	I/O Circuit type*	Function
	P03		General-purpose I/O port
83	SIN4	С	Multi function serial 4 serial data input pin
	INT11		External interrupt request 11 input pin
	P04		General-purpose I/O port
84	SOT4/ SDA4	С	Multi function serial 4 serial data output pins I ² C data I/O pins
	INT12		External interrupt request 12 input pin
	P05		General-purpose I/O port
85	SCK4/ SCL4	С	Multi function serial 4 clock I/O pins I ² C clock I/O pins
	INT13		External interrupt request 13 input pin
	P06		General-purpose I/O port
86	SIN5	С	Multi function serial 5 serial data input pin
	INT14		External interrupt request 14 input pin
	P07		General-purpose I/O port
87	SOT5/ SDA5	С	Multi function serial 5 serial data output pins I ² C data I/O pins
	INT15		External interrupt request 15 input pin
	P10		General-purpose I/O port
88	SCK5/ SCL5	С	Multi function serial 5 clock I/O pins I ² C clock I/O pins
	TIN0		Reload timer event input pin
	P11		General-purpose I/O port
89	SIN6	С	Multi function serial 6 serial data input pin
	TOT0		Reload timer output pin
	P12		General-purpose I/O port
90	SOT6/ SDA6	С	Multi function serial 6 serial data output pins I ² C data I/O pins
	TIN1		Reload timer event input pin
	P13		General-purpose I/O port
91	SCK6/ SCL6	С	Multi function serial 6 clock I/O pins I ² C clock I/O pins
	TOT1		Reload timer output pin
	P14		General-purpose I/O port
92	SIN7	С	Multi function serial 7 serial data input pin
	TIN2		Reload timer event input pin


Pin No.	Pin name	I/O Circuit type*	Function
	P15		General-purpose I/O port
93	SOT7/ SDA7	С	Multi function serial 7 serial data output pins I ² C data I/O pins
	TOT2		Reload timer output pin
	P16		General-purpose I/O port
94	SCK7/ SCL7	С	Multi function serial 7 clock I/O pins I ² C clock I/O pins
	ADTRG1		A/D converter trigger input pin
95	P17	С	General-purpose I/O port
93	ADTRG0	C	A/D converter trigger input pin
96	P20	С	General-purpose I/O port
90	SIN0	O	Multi function serial 0 serial data input pin
	P21		General-purpose I/O port
97	SOT0/ SDA0	С	Multi function serial 0 serial data output pins I ² C data I/O pins
	P22		General-purpose I/O port
98	SCK0/ SCL0	С	Multi function serial 0 clock I/O pins I ² C clock I/O pins
99	P23	С	General-purpose I/O port
33	SIN1	C	Multi function serial 1 serial data input pin
100	VCC	_	Power supply input pin (3.3 V)


^{* :} For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

Preventing Latch-up

Latch-up may occur in a COMS IC if a voltage greater than VCC pin, or less than VSS pin is applied to input and output pins, or if an above-rating voltage is applied between VCC pin and VSS pin. If the latch-up occurs, the significantly increases the power supply current and may cause thermal destruction of an element. Thus, When you use a CMOS IC, be very careful not to exceed maximum voltage rating.

• Treatment of Unused input pins

Do not leave an unused input pin open, since it may cause a malfunction. Thus, use pull-up or pull-down resistor.

· About power supply pins

If there are multiple VCC pin or VSS pin, from the point of view of device design, pins to be of the same level are connected the inside of the device to prevent such malfunctioning as latch-up. Be sure to connect all of them to the power supply and ground externally for reducing unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the total output current standard. In addition, consideration should be given to connecting VCC/VSS of this device with as low an impedance as possible from the current supply source. Also, we recommend connecting a ceramic capacitor of about 0.1 µF as a bypass capacitor between VCC and VSS near this device.

About crystal oscillator circuit

Noise near the X0 and X1 pins can cause this device to malfunction. Design the PC board such that X0 and X1 pins, crystal oscillator (or ceramic oscillator), and bypass capacitor to the ground are placed as near one another as possible. It is strongly recommended to design the PC board artwork with the X0/X1 pins surrounded by a ground plane, as it expects stable operations.

Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

About mode pins (MD0 to MD2)

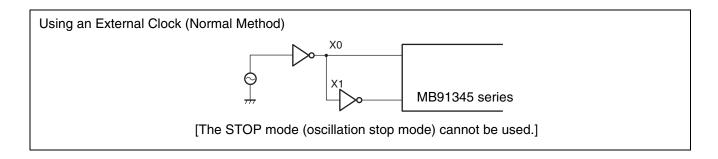
These pins should be connected directly to VCC or VSS pins. To prevent the device erroneously switching to test mode due to noise, design the PC board such that the distance between the mode pins and VCC or VSS pins is as short as possible and the connection impedance is low.

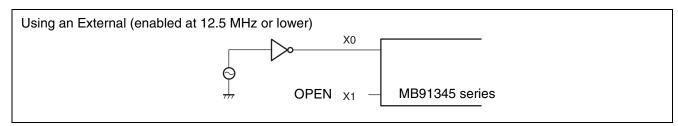
About operation at power-on

Be sure to set initialized reset (INIT) with $\overline{\text{INIT}}$ pin immediately after power-on.

Immediately after turning on the power, be sure to continue connecting the Low level input to the INIT pin for the stabilization wait time required for oscillator circuit, to secure the stabilization wait time of the oscillator and regulator (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value).

• About oscillation input at power on

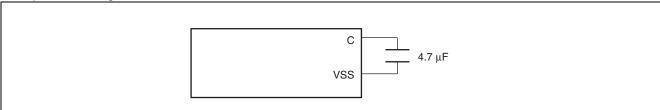

When turning on the power, be sure that clock input is maintained until the device is released from the oscillation stabilization wait state.


Note on power-on/off sequences

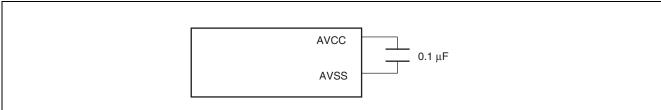
When turning on the power, the output pin may be indeterminate until the internal power supply stabilizes.

Note when using external clock

In principle, when using external clock, supply a clock to the X0 pin and an opposite-phase clock signal to the X1 pin simultaneously. However in this case, the STOP mode (oscillator stop mode) must not be used, because the X1 pin stops with the "H" output in the STOP mode. At 12.5 MHz or less, the device can be used with the clock signal supplied only to the X0 pin.



Note: The X1 pin must be designed to have a delay within 15 ns, at 10 MHz, from the signal to the X0 pin.


About C pin

MB91345 series has an internal regulator. A bypass condenser of 4.7 μ F or above should be connected to the C pin for the regulator.

• About AVCC pin

MB91345 series has an internal A/D converter. A condenser of approximately 0.1 μ F should be connected between the AVCC pin and AVSS pin.

• Treatment of NC pin and OPEN pin

The NC and OPEN pins should always be open.

• Note when not using emulator

If evaluation MCU on user system is operated without emulator, each input pin on evaluation MCU connected to the emulator interface on the user system should be handled, as described in the following table. Note that the switch circuit or other function may be required on user system when designing the MCU.

Emulator Interface Pin Treatment

Evaluation MCU pin name	Pin processing
TRST	Connect to the reset output circuit on the user system.
ĪNIT	Connect to the reset output circuit on the user system.
Others	Open.

■ RESTRICTIONS

- Common in the series
 - Clock control block
 Take the oscillation stabilization wait time during Low level input to INIT pin.
 - Bit search module

The bit search data register for 0-detection (BSD0), and bit search data register for 1-detection (BSD1), and bit search data register for change point detection (BSDC) are only word-accessible.

• I/O port Ports are accessed only in bytes.

- Low power consumption mode
- To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit8 in TBCR, or timebase counter control register) and be sure to use the following sequence:

```
(ldi
           #value_of_standby, r0)
(ldi
           #_STCR, r12)
                           // set STOP/SLEEP bit
stb
           r0, @r12
ldub
            @r12, r0
                           // Must read STCR
ldub
            @r12, r0
                           // after reading, go into standby mode
                           // Must insert NOP *5
nop
nop
nop
nop
nop
```

- Please do not do the following when the monitor debugger is used
 - Setting of the break point to the above instructions.
 - Execution of the single-stepping for the above instructions.

- · Notes on the PS register
 - As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated. In either case, the operations before and after an EIT are performed as specified as the device is designed such that the recovery from the EIT is followed by correct re-processing.
- The instruction just before the DIV0U/DIV0S instruction may cause the following operation, if a user interrupt or NMI occurs, single-stepping is performed or a break is caused by a data event or emulator menu:
 - (1) The D0 and D1 flags are updated in advance.
 - (2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.
 - (3) Upon returning from the EIT, the DIV0U/DIV0S instruction is executed and the D0 and D1 flags are updated to the same values as shown in (1).
- If the ORCCR/STILM/MOV Ri and PS instructions are executed to enable interruptions when a user interrupt or NMI trigger even has occurred, the following operations are performed.
 - (1) The PS register is updated in advance.
 - (2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.
 - (3) Upon returning from the EIT, the instructions shown above are executed and the PS register is updated to the same value as shown in (1).
- About watchdog timer
 - MB91345 series has an internal function called "watchdog timer". This function monitors a program to perform the reset defer operation within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls and the reset defer operation is not executed. Thus, once enabled, the watchdog timer will be up and running until it resets the CPU. However, with one exception, the watchdog timer automatically defers a reset timing under the condition in which the CPU stops program execution. Refer to the hardware manual. If the system runs out of control and develops the above condition, a watchdog reset may not be generated. In that case, please reset (INIT) from external $\overline{\text{INIT}}$ terminal.
- Note on using the A/D converter
 MB91345 series has an internal A/D converter. The AVCC pin should not be supplied with higher voltage than VCC pin.
- Software reset in synchronous mode

When using the software reset in the synchronous mode, the following two conditions should be satisfied before setting "0" to the SRST bit in STCR (Standby control register).

- Set the interrupt enable flag (I-Flag) to interrupt disable (I-Flag = 0) .
- Do not use NMI.
- Debug control when using ICE
 - Single-stepping of the RETI instruction

If an interrupt occurs frequently during single stepping, only the relevant interrupt processing routine is executed repeatedly after single-stepping RETI. This will prevent the main routine and low-interrupt-level programs from being executed. Do not single-step the RETI instruction for escape. When the debugging of the relevant interrupt routine no longer requires, perform debugging with that interrupt disabled.

About operand break

Do not apply a data event break to access to the area containing the address of a stack pointer.

- Execution of an unused area of Flash memory
 Accidently if an unused area (data at 0XFFFF) of Flash memory is executed in an instruction, no break can
 be accepted. To avoid this, it is recommended to use the code event address mask feature of the debugger
 to break at instruction access to the unused area.
- Interrupt handler for NMI request (tool)
 Add the following program to the interrupt handler to prevent the device from malfunctioning when the source flag is set accidently with no ICE connected, for example, due to noise to the DSU pin, which is to be set only at the break request of the ICE. can be used normally with this program added.

; 0B00H is the address of DSU break source register

```
Add place:

Next interrupt handler

Interrupt source: NMI request (tool)

Interrupt number: 13 (decimal), 0D (hexadecimal)

Offset: 3C8H

TBR default address: 000FFFC8H

Add program

STM (R0, R1)
```

LDI #0, R1

LDI #0B00H, R0

STB R1, @R0 ; Clear the break source register

LDM (R0, R1)

RETI

■ BLOCK DIAGRAM FR60 Lite CPU core Operating macro for absolute value 32 32 **DMAC** Bit search 5 channels RAM 24 Kbytes (data) Bus Flash 512 Kbytes* Converter RAM 8 Kbytes 32 $32 \leftrightarrow 16$ Adapter X0, X1 **←**► MD2 to MD0 → Clock ĪNIT → control 16 **PORT** → PORT Interrupt 3 channels controller TOT2 to TOT0 TIN2 to TIN0 16-bit Reload timer 24 channels INT23 to INT0 → 16-bit External interrupt ← FRCK0 Free-run timer SIN10 to SIN0 → 11 channels SOT10/SDA10 to SOT0/SDA0 Multi function serial interface. (including 2 channels with built-in FIFO) 4 channels SCK10/SCL10 to 16-bit Input capture CSK0/SCL0 AN7 to AN0 _ 8 channels \times 1 unit 4 channels ADTRG0, ADTRG0-2 10-bit A/D converter → RT3 to RT0 16-bit Output compare AVRH, AVCC 8 channels × 1 unit AVSS/AVRL 32-bit 10-bit A/D converter ← FRCK1 ADTRG1, ADTRG1-2 Free-run timer AN15 to AN8 4 channels AIN3 to AIN0, 2 channels BIN3 to BIN0, 32-bit Input capture 8/16-bit up down counter ZIN3 to ZIN0 4 channels → RT7 to RT4 32-bit Output compare 16 channels PPGF to PPG0 ◄ 8/16-bit PPG *: MB91F346B is 1 Mbyte.

■ CPU AND CONTROL UNIT

The FR family CPU is a line of high-performance cores based on a RISC architecture while incorporating advanced instructions for embedded controller applications.

1. Features

• RISC architecture adopted.

Basic instructions: Executed at 1 instruction per cycle

• 32-bit architecture

General purpose registers : 32 bit \times 16

- 4G bytes of linear memory space
- Multiplier integrated.

32-bit \times 32-bit multiplication : 5 cycles.

16-bit × 16-bit multiplication : 3 cycles

• Enhanced interrupt servicing.

High-speed response (6 cycles).

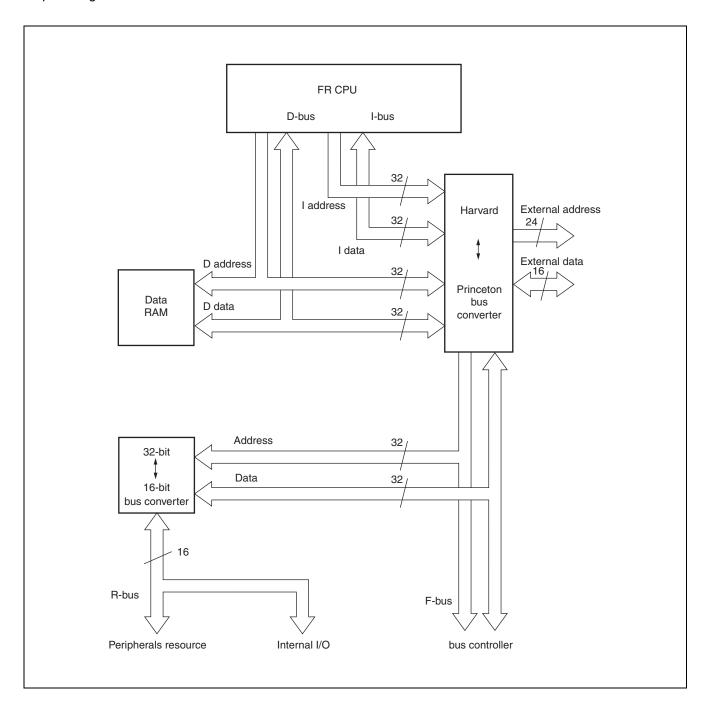
Multi-level interrupts support.

Level mask feature (16 levels)

• Enhanced I/O manipulation instructions.

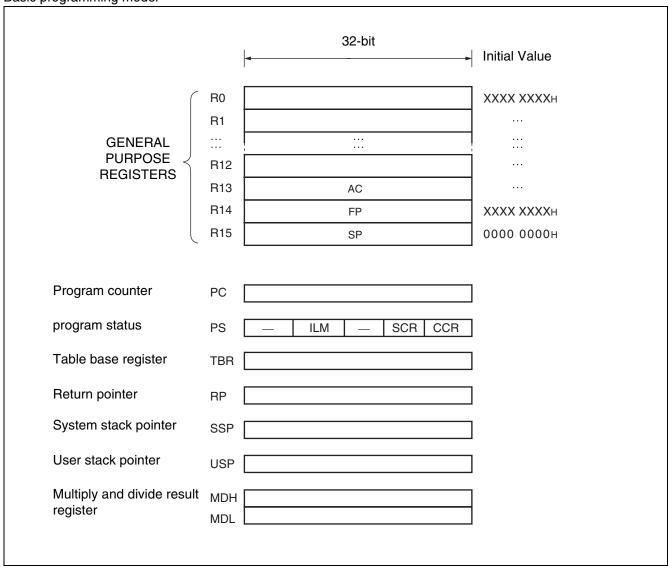
Memory-to-memory transfer instructions

Bit manipulation instructions

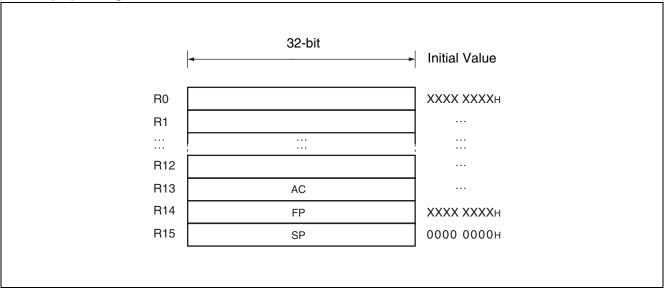

- High code efficiency. Basic instruction word length: 16-bit
- Low-power consumption.

Sleep mode / stop mode

· Gear function


2. Internal architecture

The FR-family CPU has a Harvard architecture in which the instruction bus and data buses are separated. The 32-bit \longleftrightarrow 16-bit bus converter is connected to a 32-bit bus (F-bus), providing an interface between the CPU and peripheral resources. The Harvard \longleftrightarrow Princeton bus converter is connected to both of the I-bus and D-bus, providing an interface between the CPU and the bus controller.


3. Programming model

Basic programming model

4. Register

General purpose registers

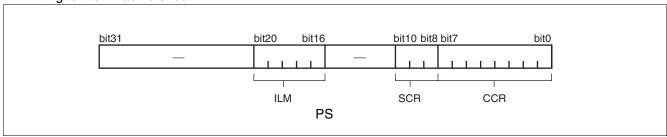
Registers R0 to R15 are general purpose registers. The registers are used as the accumulator and memory access pointers for CPU operations.

Of these 16 registers, the registers listed below are intended for special applications, for which some instructions are enhanced.

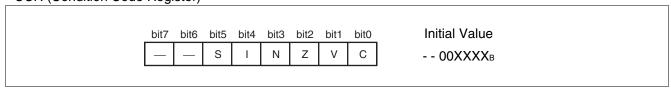
R13 : Virtual accumulator

R14 : Frame pointer

R15: Stack pointer


The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000H (SSP value).

• PS (Program Status)


This register holds the program status and is divided into the ILM, SCR, and CCR.

All of undefined bits are reserved bits. Reading these bits always returns "0".

Writing to them has no effect.

• CCR (Condition Code Register)

S: Stack flag. Cleared to "0" at a reset.

 I : Interrupt Enable flag. Cleared to "0" at a reset. N : Negative flag. Initial State at a reset is unspecified. Z : Zero flag. Initial State at a reset is unspecified. V : Overflow flag. Initial State at a reset is unspecified. C : Carry flag. Initial State at a reset is unspecified.
SCR (System Condition code Register)
bit10 bit9 bit8 Initial Value D1 D0 T XX0B
Flag for step dividing
Stores intermediate data for stepwise multiplication operations.
Step trace trap flag
A flag specifying whether the step trace trap function is enabled or not. Emulator uses step trace trap function. The function cannot be used by the user program when using the emulator.
ILM (Interrupt Level Mask Register)
bit20 bit19 bit18 bit17 bit16 Initial Value ILM4 ILM3 ILM2 ILM1 ILM0 01111B
This register stores the interrupt level mask value. The value in the ILM register is used as the level mask. Initialized to "15" (01111 _B) by a reset.
PC (Program Counter)
bit31 bit0 Initial Value XXXXXXXXн
The program counter contains the address of the instruction currently being executed. The initial value after a reset is indeterminate.
TBR (Table Base Register)

The table base register contains the start address of the vector table used for servicing EIT events. The initial value after a reset is $000FFC00_{\rm H}$.

bit0

bit31

Initial Value

000FFC00н

RP (Return Pointer)				
	bit31	bit0	Initial Value XXXXXXXXH	
When the CALL in: When the RET inst	contains the address to struction is executed, the truction is executed, the ter a reset is indeterminated.	e value in the PC is tran	nsferred to the RP.	
• Ooi (Oysielli Oldok	bit31	bit0	Initial Value 00000000н	
The SSP can be ex The SSP is also us occurs.	ter a reset is 000000000	that specifies the stack	the S flag is "0". for saving the PS and PC wh	nen an EIT event
	bit31	bit0	Initial Value XXXXXXXXн	
The USP can be ex The initial value aft	ter a reset is indetermina t be used by the RETI in	ate.	S flag is "1".	
	bit31 MDH MDL	bitO	Initial Value XXXXXXXн XXXXXXXн	

These registers hold the results of a multiplication or division. Each of them is 32-bit long.

The initial value after a reset is indeterminate.

■ MODE SETTING

In the FR family, operation mode is set by the mode setting pins (MD2, MD1, MD0) and the mode register (MODR).

1. Mode pins

They are three pins of MD2, MD1 and MD0, and specify the contents of the mode vector fetch.

Mode pins			Mode name	Reset vector Access area	
MD2	MD2 MD1 MD0		wode name	neset vector Access area	
0	0	0	Internal ROM mode vector	Internal	

Note: In the FR family, external mode vector fetch by multiplex bus is not supported.

2. Mode register (MODR)

The data that are written in the mode register by mode vector fetch is called mode data.

After the mode register (MODR) is set, it operates in the operation mode set by this register.

The mode register is set by all reset source. And Mode data is not written in by the user program.

Note: Conventionally, the address (0000 07FFH) of the mode register for the FR family holds nothing.

Details of the mode register

MODR	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial Value
0007FDн	0	0	0	0	0	ROMA	WTH1	WTH0	XXXXXXXB
Operation mode setting bits							S		

[bit7 to bit3] Reserved bits

Be sure to set these bits to "00000B".

Setting the bits to any value other than "00000_B" may result in an unpredictable operation .

[bit2] ROMA (Internal ROM enable bit)

Be sure to set this bit to "1".

ROMA	Function	Remarks
0	_	Setting disabled
1	Internal ROM mode	Embedded F-bus RAM and F-bus ROM become valid.

[bit1, bit0] WTH1, WTH0 (Bus width specifying bits)

Be sure to set these bits to "11_B".

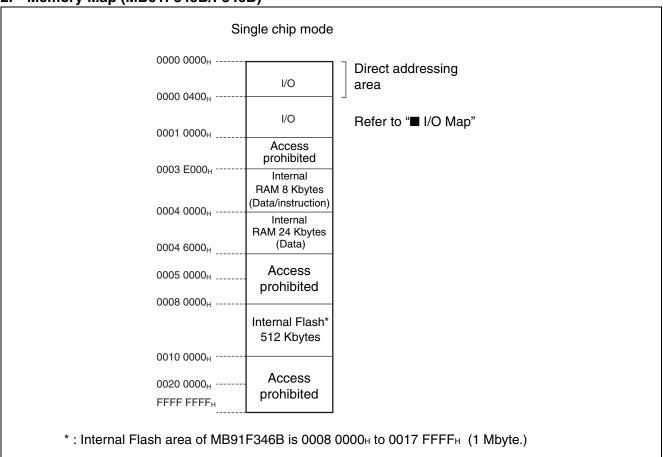
WTH1	WTH0	Function	Remarks
0	0	_	Setting disabled
0	1	_	Setting disabled
1	0	_	Setting disabled
1	1	Single chip mode	Single chip mode

■ MEMORY SPACE

1. Memory Space

The FR family has 4 Gbytes of logical address space (232 addresses) linearly accessible to the CPU.

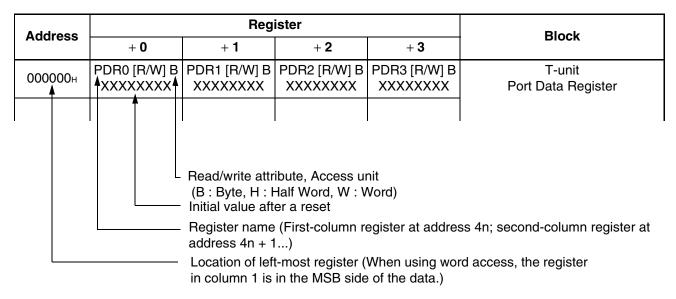
• Direct Addressing Areas


The following address space areas are used as I/O areas.

These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.

The direct area varies depending on the size of data to be accessed as follows:

ightarrow byte data access : 000m H to 0FFH ightarrow half word data access : 000m H to 1FFH ightarrow word data access : 000m H to 3FFH


2. Memory Map (MB91F345B/F346B)

■ I/O MAP

The following table shows the correspondence between the memory space area and each register of the peripheral resource.

[How to read the table]

Note: Initial values of register bits are represented as follows:

"1" : Initial value is "1".
"0" : Initial value is "0".

"X": Initial value is "indeterminate".

"-": No physical register at this location

Access is barred with an undefined data access attribute.

000000H PD 000008н	ODRO [R/W] B, H XXXXXXXX DR4 [R/W] B, H XXXXXXXX DRC [R/W] B, H XXX	T PDR1 [R/W] B, H XXXXXXXX PDR5 [R/W] B, H XXXXXXXX	PDR2 [R/W] B, H XXXXXXXX PDR6 [R/W] B, H XXXX PDRE [R/W] B, H	3 PDR3 [R/W] B, H XXXXXXXX	Block Port Data Registers					
000000H 000004н 000008н 00000Сн	XXXXXXXX DR4 [R/W] B, H XXXXXXXX DRC [R/W] B, H	XXXXXXXX PDR5 [R/W] B, H XXXXXXXX	PDR6 [R/W] B, HXXXX		Port Data Registers					
000004н 000008н 00000Сн	DRC [R/W] B, H	XXXXXXXX — PDRD [R/W] B, H	XXXX	_	Port Data Registers					
00000Сн			PDRE [R/W] B. H	•	Port Data Registers					
00000Сн			PDRE [R/W] B. H	_						
000010н			xxxxxxxx	_						
to 00001Сн		_								
000020н										
000024н А	ADCS01 [R/W]				A/D converter 0					
000028н	ADCT0 00010000		ADSCH0 [R/W] 00000	ADECH0 [R/W] 0000						
00002Сн	ADCR		ADCR1M [R] XX XXXXXXXX		A/D mirror data register					
000030н		_		ADERH1 [R/W] 11111111	A/D converter 1					
000034н А	DCS11 [R/W] 00000000	ADCS10[R, R/W] 00000000		R1 [R] XXXXXXX						
000038н	ADCT1 00010000		ADSCH1 [R/W] 0000	ADECH1 [R/W] 000						
00003Сн		_	_		Reserved					
000040н	EIRR0 [R/W] 00000000	ENIR0 [R/W] 00000000	ELVR0 [R/W] 00000000 00000000		External interrupt INT 0 to INT7					
000044н	DICR [R/W] HRCL [R, R/W] 00000000 011111		_		DLY / I-unit					
000048н	TMRLI XXXXXXXX		TMR0 [R] XXXXXXXX XXXXXXX		- Reload Timer 0					
00004Сн	_	_	TMCSR0 [R, RW] 00000000 00000000							
000050н	TMRLI XXXXXXXX		TMR1 [R] XXXXXXXX XXXXXXX		Polood Times 1					
000054н	_	_		I [R, RW] 00000000	Reload Timer 1					

Address		Block			
Address	0	1	2	3	DIOCK
000058н		R2 [W] XXXXXXXX	TMR XXXXXXXX	Reload Timer 2	
00005Сн	_	_	TMCSR: 00000000		
000060н	SCR0/IBCR0 [R, R/W] *	SMR0 [W, R/W]	SSR0 [R, R/W]	ESCR0/IBSR0 [R/W]	
000064н	RDR0/TE	DR0 [R/W]	BGR01 [R/W]	BGR00 [R/W]	Multi function Serial Interface 0
000068н	ISMK0 [R/W]	IBSA [R/W]	FCR01 [R/W]	FCR00 [R/W]	FIFO 0
00006Сн	FBYTE02 [R/W] FBYTE01 [R/W]			_	
000070н	SCR1/IBCR1 [R, R/W]	SMR1 [W, R/W]	SSR1 [R, R/W]	ESCR1/IBSR1 [R/W]	
000074н	RDR1/TDR1 [R/W]		BGR11 [R/W]	BGR10 [R/W]	Multi function Serial Interface 1
000078н	ISMK1 [R/W]	IBSA1 [R/W]	FCR11 [R/W]	FCR10 [R/W]	FIFO 1
00007Сн	FBYTE12 [R/W] FBYTE11 [R/W]		_		
000080н	SCR2/IBCR2 [R, R/W]	SMR2 [W, R/W]	SSR2 [R, R/W]	ESCR2/IBSR2 [R/W]	
000084н	RDR2/TD	PR2 [R/W] *	BGR21 [R/W]	BGR20 [R/W]	Multi function Serial Interface 2
000088н	ISMK2 [R/W]	IBSA2 [R/W]	_		
00008Сн		_	_		
000090н	SCR3/IBCR3 [R, R/W]	SMR3 [W, R/W]	SSR3 [R, R/W]	ESCR3/IBSR3 [R/W]	
000094н	RDR3/TDR3 [R/W]		BGR31 [R/W]	BGR30 [R/W]	Multi function Serial Interface 3
000098н	ISMK3 [R/W]	IBSA3 [R/W]	_		
00009Сн					

A ddraga		Block			
Address	0	1	2	3	- вюск
0000А0н	SCR4/IBCR4 [R, R/W]	SMR4 [W, R/W]	SSR4 [R, R/W]	ESCR4/IBSR4 [R/W]	
0000А4н	RDR4/TD	DR4 [R/W] *	BGR41 [R/W] BGR40 [R/W]		Multi function Serial Interface 4
0000А8н	ISMK4 [R/W]	IBSA4 [R/W]	_		
0000АСн		_	_		1
0000В0н	SCR5/IBCR5 [R, R/W]	SMR5 [W, R/W]	SSR5 [R, R/W]	ESCR5/IBSR5 [R/W]	
0000В4н	RDR5/TD	DR5 [R/W] *	BGR51 [R/W]	BGR50 [R/W]	Multi function Serial Interface 5
0000В8н	ISMK5 [R/W]	IBSA5 [R/W]	_		
0000ВСн		_			
0000С0н	EIRR1 [R/W] 00000000	ENIR1 [R/W] 00000000	ELVR1 [R/W] 00000000 00000000		External interrupt INT 8 to INT15
0000С4н	EIRR2 [R/W] ENIR2 [R/W] 00000000 00000000		ELVR2 [R/W] 00000000 00000000		External interrupt INT 16 to INT 23
0000С8н to 0000ССн		Reserved			
0000D0н		CLR [R/W] H 11111111	TCDT [R/W] H 00000000 00000000		16-bit
0000Д4н	TCCSH [R/W] B		-		Free-run Timer 0
0000D8н		_	_		Reserved
0000DСн		PCPL0 [R] XXXXXXXX	IPCPH1/IPCPL1 [R] XXXXXXXX XXXXXXX		
0000Е0н		PCPL2 [R] XXXXXXXX		PCPL3 [R] XXXXXXXX	16-bit Input Capture
0000Е4н	ICSH01 [R/W] 00	ICSL01 [R/W] 00000000	ICSH23 [R/W] 00	ICSL23 [R/W] 00000000	
0000Е8н		CCPL0 [R/W] XXXXXXXX	OCCPH1/OCCPL1 [R/W] XXXXXXXX XXXXXXX		Output Compare 0, 1
0000ЕСн		CCPL2 [R/W] XXXXXXXX		CCPL3 [R/W] XXXXXXXX	Output Compare 2, 3
0000F0н		1 [R/W] 00001100		3 [R/W] 00001100	Output Compare 0 to 3 Control

A -1-1		Reg	ister		Disale	
Address	0	1	2	3	Block	
0000F4н	OCMOD [R/W] B 00000000		_		Output Compare Mode Select	
0000F8н	PWCSR0 [R/\ 0000000X	W, R] B, H, W 00000000		PWCR0 [R] H, W 00000000 00000000		
0000FСн	_	PDIVR0 [R/W] B, H, W XXXXX000	_	_	PWC	
000100н	PRLH0 [R/W] B, H, W XXXXXXXX	PRLL0 [R/W] B, H, W XXXXXXXX	PRLH1 [R/W] B, H, W XXXXXXXX	PRLL1 [R/W] B, H, W XXXXXXXX		
000104н	PRLH2 [R/W] B, H, W XXXXXXXX	PRLL2 [R/W] B, H, W XXXXXXXX	PRLH3 [R/W] B, H, W XXXXXXXX	PRLL3 [R/W] B, H, W XXXXXXXX		
000108н	PPGC0 [R/W] B, H, W 0000000X	PPGC1 [R/W] B, H, W 0000000X	PPGC2 [R/W] B, H, W 0000000X	PPGC3 [R/W] B, H, W 0000000X		
00010Сн	PRLH4 [R/W] B, H, W XXXXXXXX	PRLL4 [R/W] B, H, W XXXXXXXX	PRLH5 [R/W] B, H, W XXXXXXXX	PRLL5 [R/W] B, H, W XXXXXXXX		
000110н	PRLH6 [R/W] B, H, W XXXXXXXX	PRLL6 [R/W] B, H, W XXXXXXXX	PRLH7 [R/W] B, H, W XXXXXXXX	PRLL7 [R/W] B, H, W XXXXXXXX		
000114н	PPGC4 [R/W] B, H, W 0000000X	PPGC5 [R/W] B, H, W 0000000X	PPGC6 [R/W] B, H, W 0000000X	PPGC7 [R/W] B, H, W 0000000X	DDC 0 to DDC F	
000118н	PRLH8 [R/W] B, H, W XXXXXXXX	PRLL8 [R/W] B, H, W XXXXXXXX	PRLH9 [R/W] B, H, W XXXXXXXX	PRLL9 [R/W] B, H, W XXXXXXXX	PPG 0 to PPG F	
00011Сн	PRLHA [R/W] B, H, W XXXXXXXX	PRLLA [R/W] B, H, W XXXXXXXX	PRLHB [R/W] B, H, W XXXXXXXX	PRLLB [R/W] B, H, W XXXXXXXX		
000120н	PPGC8 [R/W] B, H, W 0000000X	PPGC9 [R/W] B, H, W 0000000X	PPGCA [R/W] B, H, W 0000000X	PPGCB [R/W] B, H, W 0000000X		
000124н	PRLHC [R/W] B, H, W XXXXXXXX	PRLLC [R/W] B, H, W XXXXXXXX	PRLHD [R/W] B, H, W XXXXXXXX	PRLLD [R/W] B, H, W XXXXXXXX		
000128н	PRLHE [R/W] B, H, W XXXXXXXX	PRLLE [R/W] B, H, W XXXXXXXX	PRLHF [R/W] B, H, W XXXXXXXX	PRLLF [R/W] B, H, W XXXXXXXX		
00012Сн	PPGCC [R/W] B, H, W 0000000X	PPGCD [R/W] B, H, W 0000000X	PPGCE [R/W] B, H, W 0000000X	PPGCF [R/W] B, H, W 0000000X		

A al al a a a		Disale			
Address	0	1	2	3	Block
000130н	PPGTRG [F 00000000	PPG 0-F			
000134н	PPGREVC [00000000	R/W] B, H, W 00000000	_	_	
000138н to 00014Сн		_	_		Reserved
000150н	1		CLR [R/W] W 111111111 111111	11	32 bit
000154н	00		R/W] W 00000000 0000000	00	Free Run Timer 0
000158н	TCCSH [R/W] B 00000000	TCCSL [R/W] B 01000000	_	_	
00015Сн	XXXX		I [R] W XXXXXXXX XXXX	xxxx	
000160н	XXXX		5 [R] W XXXXXXXX XXXX	XXXX	32 bit Input Capture Unit
000164н	XXXX		[R] W XXXXXXXX XXXX	XXXX	4 to 7
000168н	XXXX		7 [R] W XXXXXXXX XXXX	XXXX	
00016Сн	_	ICS45 [R/W] 00000000	_	ICS67 [R/W] 00000000	
000170н	XXXX		[R/W] W XXXXXXXX XXXX	XXXX	
000174н	XXXX		[R/W] W XXXXXXXX XXXX	XXXX	00 1 7
000178н	XXXX		[R/W] W XXXXXXXX XXXX	XXXX	32 bit Output Compare 4 to 7
00017Сн	XXXX		[R/W] W XXXXXXXX XXXX	XXXX	1 10 7
000180н	OCS45 11101100				
000184н	RCRH1 [W] B, H 00000000	RCRL0 [W] B, H 00000000	UDCR1 [R] B, H 00000000	UDCR0 [R] B, H 00000000	
000188н	CCRH0 [R/W] B, H 00000000	CCRL0 [R/W] B, H 00000000	_	CSR0 [R/W] B 00000000	Up/Down Counter 0, 1
00018Сн	CCRH1 [R/W] CCRL1 [R/W] CSR1 [R/W] B, H B, H B 00000000 00000000 00000000			В	

Address		Reg	ister		Block	
Address	0	1	2	3	DIOCK	
000190н		_	_	Reserved		
000194н	RCRH3 [W] B, H 00000000	RCRL2 [W] B, H 00000000	UDCR3 [R] B, H 00000000	UDCR2 [R] B, H 00000000		
000198н	CCRH2 [R/W] B, H 00000000	CCRL2 [R/W] B, H 00000000	_	— CSR2 [R/W] — B 00000000		
00019Сн	CCRH3 [R/W] B, H 00000000	CCRL3 [R/W] B, H 00000000	_	CSR3 [R/W] B 00000000		
0001А0н						
to 0001ACн		_	_		Reserved	
0001В0н	SCR6/IBCR6 [R, R/W] *	SMR6 [W, R/W]	SSR6 [R, R/W]	ESCR6/IBSR6 [R/W] *		
0001В4н	RDR6/TD	PR6 [R/W] *	BGR61 [R/W]	BGR61 [R/W] BGR60 [R/W]		
0001В8н	ISMK6 [R/W]	IBSA6 [R/W]	_	_		
0001ВСн		-				
0001С0н	SCR7/IBCR7 [R, R/W]	SMR7 [W, R/W]	SSR7 [R, R/W]	ESCR7/IBSR7 [R/W]		
0001С4н	RDR7/TD	PR7 [R/W] *	BGR71 [R/W]	BGR70 [R/W]	Multi function Serial Interface 7	
0001С8н	ISMK7 [R/W]	IBSA7 [R/W]	_	_		
0001ССн			_			
0001D0н	SCR8/IBCR8 [R, R/W]	SMR8 [W, R/W]	SSR8 [R, R/W]	ESCR8/IBSR8 [R/W]		
0001D4н	RDR8/TD	! DR8 [R/W] *	BGR81 [R/W] BGR80 [R/W] *		Multi function Serial Interface 8	
0001D8н	ISMK8 [R/W]	IBSA8 [R/W]				
0001DСн		-	_			

A ddwgg	Register						
Address	0	1	2	3	Block		
0001Е0н	SCR9/IBCR9 [R, R/W]	SMR9 [W, R/W]	SSR9 [R, R/W]	ESCR9/IBSR9 [R/W]			
0001Е4н	RDR9/TI	RDR9/TDR9 [R/W] BGR91 [R/W] BGR90 [R/W]					
0001Е8н	ISMK9 [R/W]	IBSA9 [R/W]	_	_			
0001ЕСн		_	_		1		
0001F0н	SCRA/IBCRA [R, R/W]	SMRA [W, R/W]	SSRA [R, R/W]	ESCRA/IBSRA [R/W]			
0001F4н	RDRA/TI	DRA [R/W]	BGRA1 [R/W]	BGRA0 [R/W]	Multi function Serial Interface 10		
0001F8н	ISMKA [R/W]	IBSAA [R/W]	_	_			
0001FСн		_	_				
000200н	0	DMACA 0000000 00000000	00 [R/W] 00000000 0000000	00			
000204н	0	DMACE 0000000 00000000	80 [R/W] 00000000 0000000	00			
000208н	0	DMAC <i>A</i> 0000000 00000000	11 [R/W] 00000000 0000000	00			
00020Сн	0	DMACE 0000000 00000000	31 [R/W] 00000000 0000000	00			
000210н	0	DMAC <i>A</i> 0000000 00000000	A2 [R/W] 00000000 0000000	00	DMAC		
000214н	0	DMACE 0000000 00000000	32 [R/W] 00000000 0000000	00	DIMAC		
000218н	0	DMAC <i>A</i> 0000000 00000000	3 [R/W] 00000000 0000000	00			
00021Сн	0	DMACE 0000000 00000000	33 [R/W] 00000000 0000000	00			
000220н	0						
000224н	0						
000228н to 00023Сн	_				Reserved		
000240н	0XX	DMACI 00000 XXXXXXXX	R [R/W] XXXXXXXX XXXX	(XXX	DMAC		

A daluage		Disak			
Address	0	3	Block		
000244н to 0003ВСн		_	_		Reserved
0003А0н	XXXX		_A [-/W] XXXXXXXX XXXX	xxxx	
0003А4н	XXXX		_B [-/W] XXXXXXXX XXXX	XXXX	
0003А8н	0		[R/W] 00000000 000000	00	MIN/MAX/ABS
0003АСн	0		[R/W] 00000000 0000000	00	
0003В0н	0		[R/W] 00000000 0000000	00	
0003B4н to 0003EСн		_	_		Reserved
0003F0н	XXXX		0 [W] XXXXXXXX XXXX	xxxx	
0003F4н	XXXX		[R/W] XXXXXXXX XXXX	XXXX	Bit Search
0003F8н	XXXX		C [W] XXXXXXXX XXXX	XXXX	Dit Gealon
0003FСн	XXXX		R [R] XXXXXXXX XXXX	XXXX	
000400н	DDR0 [R/W] B, H 00000000	DDR1 [R/W] B, H 00000000	DDR2 [R/W] B, H 00000000	DDR3 [R/W] B, H 00000000	
000404н	DDR4 [R/W] B, H 00000000	DDR5 [R/W] B, H 00000000	DDR6 [R/W] B, H 0000	_	Data Direction
000408н		Registers			
00040Сн	DDRC [R/W] B, H				
000410н					
000414н to 00041Сн		Reserved			

Address		Block			
Address	0	1	2	3	DIOCK
000420н	PFR0 [R/W] B, H 00000000	PFR1 [R/W] B, H 00000000	PFR2 [R/W] B, H 00000000	PFR3 [R/W] B, H 00000000	
000424н	PFR4 [R/W] B, H 00000000	PFR5 [R/W] B, H 00000000	PFR6 [R/W] B, H 0000	_	Port Function
000428н		_	_		Register
00042Сн	PFRC [R/W] B, H	PFRD [R/W] B, H 00000000	PFRE [R/W] B, H 00000000	_	
000430н to 00043Сн		_	_		Reserved
000440н	ICR00 [R, R/W] 11111	ICR01 [R, R/W] 11111	ICR02 [R, R/W] 11111	ICR03 [R, R/W] 11111	
000444н	ICR04 [R, R/W] 11111	ICR05 [R, R/W] 11111	ICR06 [R, R/W] 11111	ICR07 [R, R/W] 11111	
000448н	ICR08 [R, R/W] 11111	ICR09 [R, R/W] 11111	ICR10 [R, R/W] 11111	ICR11 [R, R/W]	
00044Сн	ICR12 [R, R/W] 11111	ICR13 [R, R/W] 11111	ICR14 [R, R/W] 11111	ICR15 [R, R/W] 11111	
000450н	ICR16 [R, R/W] 11111	ICR17 [R, R/W] 11111	ICR18 [R, R/W] 11111	ICR19 [R, R/W] 11111	
000454н	ICR20 [R, R/W] 11111	ICR21 [R, R/W] 11111	ICR22 [R, R/W] 11111	ICR23 [R, R/W] 11111	Interrupt Control
000458н	ICR24 [R, R/W] 11111	ICR25 [R, R/W] 11111	ICR26 [R, R/W] 11111	ICR27 [R, R/W] 11111	Register
00045Сн	ICR28 [R, R/W] 11111	ICR29 [R, R/W] 11111	ICR30 [R, R/W] 11111	ICR31 [R, R/W] 11111	
000460н	ICR32 [R, R/W] 11111	ICR33 [R, R/W] 11111	ICR34 [R, R/W] 11111	ICR35 [R, R/W] 11111	
000464н	ICR36 [R, R/W] 11111	ICR37 [R, R/W] 11111	ICR38 [R, R/W] 11111	ICR39 [R, R/W] 11111	
000468н	ICR40 [R, R/W] 11111	ICR41 [R, R/W] 11111	ICR42 [R, R/W] 11111	ICR43 [R, R/W] 11111	
00046Сн	ICR44 [R, R/W] 11111	ICR45 [R, R/W] 11111	ICR46 [R, R/W] 11111	ICR47 [R, R/W] 11111	
000470н to 00047Сн	Reserved				

A .1.1	Register					
Address	0	1	2	3	Block	
000480н	RSRR [R, R/W] 10000000	STCR [R/W] 00110011	TBCR [R/W] 00XXXX00	CTBR [W] XXXXXXXX		
000484н	CLKR [R/W] 00000000	WPR [W] XXXXXXXX	DIVR0 [R/W] DIVR1 [R/W] 000000011 00000000		Clock Control Unit	
000488н	_	_	OSCCR [R/W] XXXXXXXX	_		
00048Сн		_	_		Reserved	
000490н	OSCR [R/W] 00000000	OSCT [R/W] XXXXXXXX	_	_	Stb. Wait Timer	
000494н to 0004FCн		_	_		Reserved	
000500н	PCR0 [R/W] B, H 00000000	PCR1 [R/W] B, H 00000000	_	_		
000504н	_	PCR5 [R/W] B, H 00000000	PCR6 [R/W] B, H 0000	_	Pull-up Control	
000508н		_	_		Registers	
00050Сн	PCRC [R/W] B, H 000	PCRD [R/W] B, H 00000000	PCRE [R/W] B, H 00000000			
000510н		_	_			
000514н to 00051Сн		_	_		Reserved	
000520н	EPFR0 [R/W] B, H 00000000	EPFR1 [R/W] B, H 00000000	EPFR2 [R/W] B, H 11111111	EPFR3 [R/W] B, H 11111111		
000524н	EPFR4 [R/W] B, H 11111111	EPFR5 [R/W] B, H 11111111	EPFR6 [R/W] B, H 1000	_	Extra Port Function	
000528н		-	_		Registers	
00052Сн	EPFRC [R/W] B, H 000	EPFRD [R/W] B, H 00000000	EPFRE [R/W] B, H 00000000	_		
000530н						
000534н to 000550н		Reserved				

A dalama		Reg	ister		Block	
Address	0	1	2	3	Block	
000554н	TTCR0 [R/W] B, H, W 11110000	_	_			
000558н	COMP0 [R/W] B, H, W 00000000	COMP2 [R/W] B, H, W 00000000	B, H, W B, H, W B, H, W			
00055Сн	TTCR1 [R/W] B, H, W 11110000	_	_	TSTPR1 [R] B, H, W 00000000	Timing Generator	
000560н	COMP8 [R/W] B, H, W 00000000	COMP10 [R/W] B, H, W 00000000	COMP12 [R/W] B, H, W 00000000	COMP14 [R/W] B, H, W 00000000		
000564н to 000574н		_	_		Reserved	
000578н	ADTGS [R/W] B00		_		AD Trigger Select	
00057Сн to 00063Сн		_	_		Reserved	
000640н to 0007F8н		_	_		Not Used	
0007FСн	_	MODR [W] XXXXXXXX	_	_	Mode Register	
000800н to 000AFCн		_	_		Not Used	
000В00н	ESTS0 [R/W] B X0000000	ESTS1 [R/W] B XXXXXXXX	ESTS2 [R] B 1XXXXXXX	_		
000В04н	ECTL0 [R/W] B 0X000000	ECTL1 [R/W] B 00000000	ECTL2 [W] B 000X0000	ECTL3 [R/W] B 00X00X11		
000В08н	ECNT0 [W] B XXXXXXXX	ECNT1 [W] B XXXXXXXX			DSU	
000В0Сн		EWPT [R] H				
000В10н	EDTRO XXXXXXXX					
000В14н to 000В1Сн		(Continued)				

Address	Block							
Address	0 1 2 3							
000В20н	«ххх							
000В24н	OB24H EIA1 [W] W XXXXXXXX XXXXXXXX XXXXXXXX							
000В28н	XXX							
000В2Сн	XXX	EIA3 [\ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		(XXX				
000В30н	XXX	EIA4 [\ XXXXXX XXXXXXXXX		(XXX				
000В34н	XXX	EIA5 [\ XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-	(XXX				
000В38н	XXX	EIA6 [\ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		(XXX				
000В3Сн	XXX	EIA7 [\ XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	•	(XXX	DSU (Evaluation Chip Only)			
000В40н	XXX	EDTA [F	-	(XXX				
000В44н	XXX	EDTM [F	-	(XXX				
000В48н	XXX	EOA0 [XXXXXX XXXXXXXX		(XXX				
000В4Сн	XXX	EOA1 [XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX		(XXX				
000В50н	XXX	EPCR [F (XXXXX XXXXXXXX)		ΚΧΧΧ				
000В54н	XXX	EPSR XXXXXX XXXXXXXX		ΚΧΧΧ				
000В58н	XXX	EIAM(XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		ΚΧΧΧ				
000В5Сн	XXX	EIAM1	XXXXXXXX XXXXX	ΚΧΧΧ				
000В60н	000B60н EOAM0/EODM0 [W] XXXXXXXXX XXXXXXXX XXXXXXXX							
000В64н	XXX	EOAM1/EC	XXXXXXXX XXXXX	ХХХХ				
000В68н	XXX	EOD0	XXXXXXXX XXXXX	ХХХХ				
000В6Сн	XXX	EOD1 (XXXXX XXXXXXXX		ΚΧΧΧ	(Continue			

Address		Block					
Address	0	1	2	3	BIOCK		
000В70н to 000FFCн			_		Reserved		
001000н	00		A0 [R/W] 0 00000000 000000	00			
001004н	00		0A0 [R/W] 0 00000000 000000	00			
001008н	00		A1 [R/W] 0 00000000 000000	00			
00100Сн	00		A1 [R/W] 0 00000000 000000	00			
001010н	00		A2 [R/W] 0 00000000 000000	00	DMAC		
001014н	00		A2 [R/W] 0 00000000 000000	00	DIVIAC		
001018н	00		A3 [R/W] 0 00000000 000000	00			
00101Сн	00		A3 [R/W] 0 00000000 000000	00			
001020н	00		A4 [R/W] 0 00000000 000000	00			
001024н	00		A4 [R/W] 0 00000000 000000	00			
001028н to 006FFCн			_		Reserved		
007000н	FLCR [R/W] 01101000		_		Flash Interface		
007004н	FLWC [R/W] 00110011						
007008н to 007019н		Reserved					
007020н	WREN [R/W] 00000000	Wild Register Enable Register					
007024н to 00702Сн		—					

Address —		Block					
Address	0	1	2	3	- BIOCK		
007030н							
007034н							
007038н	xxxxx	Flash Interface					
00703Сн	xxx		1 [R/W] X XXXXXXXX XXX	xxxxx	Tidon interface		
007040н	xxx		2 [R/W] X XXXXXXXX XXX	xxxxx			
007044н	XXX		2 [R/W] X XXXXXXXX XXX	xxxxx			
007048н	WA3 [R/W]						
00704Сн	xxx		3 [R/W] X XXXXXXXX XXX	XXXXX			
007050н	XXX		4 [R/W] X XXXXXXXX XXX	XXXXX			
007054н	xxx		4 [R/W] X XXXXXXXX XXX	XXXXX			
007058н	xxx		5 [R/W] X XXXXXXXX XXX	xxxxx	Flash Interface		
00705Сн	xxx		5 [R/W] X XXXXXXXX XXX	xxxxx	Tidon interface		
007060н	XXX		6 [R/W] X XXXXXXXX XXX	xxxxx			
007064н	007064н WD6 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX						
007068н	XXX	xxxxx					
00706Сн	XXX		7 [R/W] X XXXXXXXX XXX	xxxxx			

^{* :} Refer to "Hardware manual" for initial value.

■ VECTOR TABLE

	Interru	ıpt No.	Interrupt		Address of	DMA	DMAC
Interrupt factor	Decimal	Hexa- decimal	level	Offset	TBR default	transfer	STOP factor
Reset	0	00	_	3FСн	000FFFFCн	_	
Mode vector	1	01	_	3F8н	000FFFF8н	_	
System reserved	2	02	_	3F4н	000FFFF4 _H	_	=
System reserved	3	03	_	3F0н	000FFFF0 _H	_	-
System reserved	4	04	_	3ЕСн	000FFFECн	_	
System reserved	5	05	_	3Е8н	000FFFE8н	_	-
System reserved	6	06	_	3Е4н	000FFFE4н	_	-
Coprocessor absent trap	7	07	_	3Е0н	000FFFE0н	_	=
Coprocessor error trap	8	08	_	3DСн	000FFFDCн	_	=
INTE instruction	9	09	_	3D8 _H	000FFFD8н	_	
Instruction break exception	10	0A	_	3D4н	000FFFD4н	_	
Operand break trap	11	0B	_	3D0н	000FFFD0н	_	
Step trace trap	12	0C	_	3ССн	000FFFCCн	_	
NMI request (tool)	13	0D	_	3С8н	000FFFC8н	_	=
Undefined instruction exception	14	0E	_	3С4н	000FFFC4н	_	_
NMI request	15	0F	15 (F _H) fixed	3С0н	000FFFC0н	_	
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCн	_	-
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н	_	
External interrupt 2	18	12	ICR02	3В4н	000FFFB4н	_	
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н	_	
External interrupt 4	20	14	ICR04	ЗАСн	000FFFACн	_	
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н	_	
External interrupt 6	22	16	ICR06	3А4н	000FFFA4н	_	-
External interrupt 7	23	17	ICR07	3А0н	000FFFA0 _H	_	
Reload timer 0	24	18	ICR08	39Сн	000FFF9Сн	0	-
Reload timer 1	25	19	ICR09	398н	000FFF98н	0	-
Reload timer 2	26	1A	ICR10	394н	000FFF94н	0	-
UART0 RX/I ² C0 status	27	1B	ICR11	390н	000FFF90 _H	0	STOP
UART0 TX	28	1C	ICR12	38Сн	000FFF8Сн	0	_
UART1 RX/I ² C1 status	29	1D	ICR13	388н	000FFF88н	0	STOP
UART1 TX	30	1E	ICR14	384н	000FFF84н	0	_
UART2 RX/I ² C2 status	31	1F	ICR15	380н	000FFF80 _H	0	STOP
UART2 TX	32	20	ICR16	37Сн	000FFF7Сн	0	_

	Interru	ıpt No.	Interrupt		Addross of	DMA	DMAC
Interrupt factor	Decimal	Hexa- decimal	Interrupt level	Offset	Address of TBR default		STOP factor
UART3 RX/TX/SX	33	21	ICR17	378н	000FFF78н	_	
UART4 RX/TX/SX	34	22	ICR18	374н	000FFF74н	_	
UART5 RX/TX/SX	35	23	ICR19	370н	000FFF70н	_	
UART6 RX/TX/SX	36	24	ICR20	36Сн	000FFF6Сн	_	
UART7 RX/TX/SX	37	25	ICR21	368н	000FFF68н	_	
UART8 RX/TX/SX	38	26	ICR22	364н	000FFF64н	_	
UART9 RX/TX/SX	39	27	ICR23	360н	000FFF60н	_	
UART10 RX/TX/SX	40	28	ICR24	35Сн	000FFF5Сн	_	
A/D Converter 0	41	29	ICR25	358н	000FFF58н	0	
A/D Converter 1	42	2A	ICR26	354н	000FFF54н	0	
PWC (measurement completed, overflow)	43	2B	ICR27	350н	000FFF50н	_	
System reserved	44	2C	ICR28	34Сн	000FFF4Сн	_	
Up/Down Counter 1	45	2D	ICR29	348н	000FFF48н	_	
Up/Down Counter 2, 3	46	2E	ICR30	344н	000FFF44н	_	
Timebase Timer Overflow	47	2F	ICR31	340н	000FFF40н	_	
PPG 0/PPG 1/PPG 4/PPG 5	48	30	ICR32	33Сн	000FFF3Cн	_	
PPG 2/PPG 3/PPG 6/PPG 7	49	31	ICR33	338н	000FFF38н	_	
PPG 8/PPG 9/PPG C/PPG D	50	32	ICR34	334н	000FFF34н	_	
PPG A/PPG B/PPG E/PPG F	51	33	ICR35	330н	000FFF30н	_	
Free-run Timer 0	52	34	ICR36	32Сн	000FFF2Cн	_	
Free-run Timer 1	53	35	ICR37	328н	000FFF28н	_	
Input Capture 0/ Input Capture 1/ Input Capture 2/ Input Capture 3	54	36	ICR38	324н	000FFF24н	_	
Input Capture 4/ Input Capture 5/ Input Capture 6/ Input Capture 7	55	37	ICR39	320н	000FFF20н	_	
Output Compare 0/ Output Compare 1/ Output Compare 2/ Output Compare 3	56	38	ICR40	31Сн	000FFF1Сн	_	
Output Compare 4/ Output Compare 5/ Output Compare 6/ Output Compare 7	57	39	ICR41	318н	000FFF18н	_	(Continued)

	Interru	ıpt No.	Interrupt		Address of	DMA	DMAC
Interrupt factor	Deci- mal	Hexa- decimal	level	Offset	TBR default	transfer	STOP factor
System reserved	58	ЗА	ICR42	314н	000FFF14н	_	
External interrupt 8 to External interrupt 15	59	3B	ICR43	310н	000FFF10н	_	
External interrupt 16 to External interrupt 23	60	3C	ICR44	30Сн	000FFF0Сн	_	
Up/Down Counter 0	61	3D	ICR45	308н	000FFF08н		
DMA (0 channel to 4 channels)	62	3E	ICR46	304н	000FFF04н	_	
Delayed interrupt activation	63	3F	ICR47	300н	000FFF00н		
System reserved (Used by REALOS)	64	40		2FCн	000FFEFCн	_	
System reserved (Used by REALOS)	65	41	_	2F8н	000FFEF8н	_	
System reserved	66	42	_	2F4н	000FFEF4н	_	
System reserved	67	43		2F0н	000FFEF0н		
System reserved	68	44	_	2ЕСн	000FFEECн	_	
System reserved	69	45	_	2Е8н	000FFEE8н		
System reserved	70	46	_	2Е4н	000FFEE4н	_	
System reserved	71	47	_	2Е0н	000FFEE0н	_	
System reserved	72	48	_	2DC _H	000FFEDCн	_	
System reserved	73	49	_	2D8н	000FFED8н	_	
System reserved	74	4A	_	2D4н	000FFED4н	_	
System reserved	75	4B	_	2D0н	000FFED0н	_	
System reserved	76	4C	_	2ССн	000FFECCн	_	
System reserved	77	4D	_	2С8н	000FFEC8н		
System reserved	78	4E	_	2С4н	000FFEC4н		
System reserved	79	4F	_	2С0н	000FFEC0н		
Used by INT instruction	80 to 255	50 to FF	_	2ВСн to 000н	000FFEBCн to 000FFC00н	_	

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Ra	Rating				
Farameter	Symbol	Min	Max	Unit			
Power supply voltage *	Vcc	Vss-0.5	Vss + 4.0	V			
Analog power supply voltage *	AVcc	Vss-0.3	Vss + 4.0	V			
Input voltage *	Vı	Vss-0.3	Vss + 4.0	V			
Analog pin input voltage *	VIA	Vss-0.3	AVcc + 0.5	V			
Storage temperature	Tstg	-40	+125	°C			

^{*:} The parameter is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}.$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

(Vss = AVss = 0 V)

Parameter	Symbol	Va	Value				
Farameter	Symbol	Min	Max	Unit			
Operating temperature	Ta	- 40	+ 85	°C			
Power supply voltage	Vcc	3.0	3.6	V			
Analog power supply voltage	AVcc	3.0	Vcc	V			

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

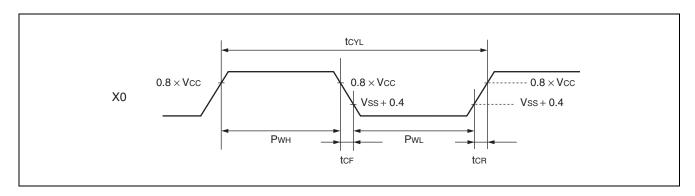
> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta = -40 °C to +85 °C)

D	Sym-	Pin	O a sea distinguis		Value		1111	D		
Parameter	bol	name	Conditions	Min	Тур	Max	Unit	Remarks		
	Icc		During normal operation Ta = +25 °C fcp = 50 MHz, fcpp = 25 MHz	_	65	80	mA			
Power supply current	Iccs	VCC	vcc	ycc	SLEEP mode during normal operation Ta = +25 °C fcp = 50 MHz, fcpp = 25 MHz		30	35	mA	
	Іссн		In STOP mode $Ta = +25 ^{\circ}C,$ $fclk = 0$	_	66	390	μΑ			
	ICCH		In STOP mode $Ta = +45 ^{\circ}C,$ $fclk = 0$	_	140	760	μΑ			
"H" level input voltage	ViH	_	_	Vcc × 0.7	_	Vcc	V	P20 to P27, P30 to P37, P40 to P47		
"L" level input voltage	VIL	_	_	Vss	_	Vcc × 0.3	٧	P20 to P27, P30 to P37, P40 to P47		
"H" level input voltage	VIH		_	Vcc×0.8	_	Vcc	٧			
"L" level input voltage	VıL		_	Vss	_	Vcc×0.2	٧			
"H" level output voltage	Vон	_	lон = −4 mA	Vcc - 0.5	_	Vcc	V			
"L" level output voltage	Vol	_	IoL = 4 mA	Vss	_	0.4	V			
Input leak current	lıL			-5		+ 5	μΑ			
A/D power supply current	_		_	_	7.2	_	mA	At operating A/D converter 2 units		
(analog + digital)	_	_	_	_	_	5	μΑ	At power down operation*		
A/D reference power supply current	_		_	_	940	_	μΑ	At operating A/D converter 2 units AVRH = 3.0 V, VSS = 0.0 V		
(AVRH to Vss)			_			10	μΑ	At power down operation*		


^{*:} Current when A/D converter is not operating and the CPU is in stop mode.

4. AC Characteristics

(1) Main Clock Input Standard

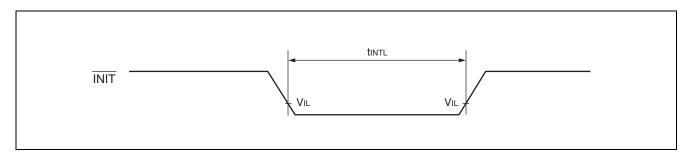
(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta =
$$-40$$
 °C to $+85$ °C)

Parameter	Sym-	Pin	Condi-		Value		Unit	Remarks
Farameter	bol	name	tions	Min	Тур	Max	Oilit	nemarks
Clock frequency	fc		_	10	12.5	13	MHz	
Input clock cycle	tcyL		_	_	80		ns	
Input clock pulse width		X0	Pwh/tcyl Pwl/tcyl	40		60	%	
Input clock rise time and fall time	tcf tcr		_	_	_	5	ns	In external clock
Internal operating clock frequency	f CP		_			50	MHz	CPU core operation clock
Peripheral clock cycle time	tcycp	_	_	40	_		ns	Peripheral clock is derived from internal operating clock divided by 1/1 to 1/16.

(2) PLL Oscillation Stabilization Wait Time (LOCK UP Time)

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta = -40 °C to +85 °C)

Parameter	Symbol	Va	lue	Unit	Remarks	
Farameter	Syllibol	Min	Max	Oilit		
PLL oscillation stabilization wait time (LOCK UP time)	tlock	500		μs	Wait time until the PLL oscillation is stable.	

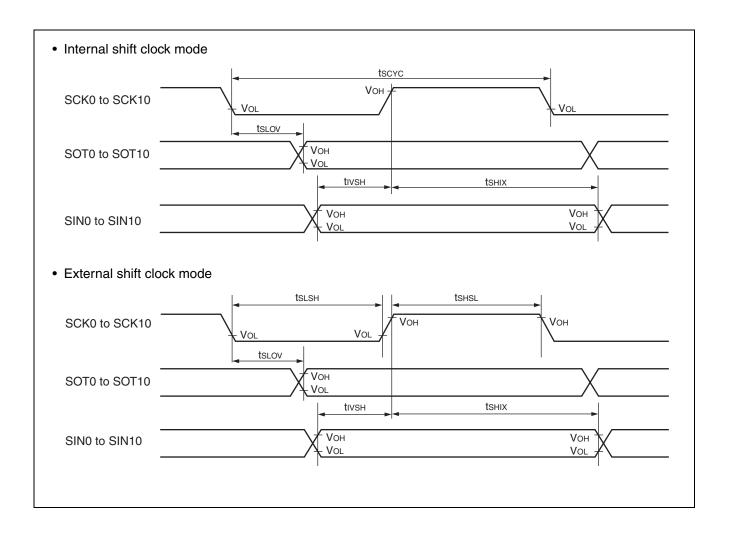

(3) Reset Input Standard

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta = -40 °C to +85 °C)

Parameter	Symbol	Pin	Condi-	Val	ue	Unit	Remarks
Farameter	name		tions	Min	Max	Oilit	nemarks
Reset input time (except power-on)	tintl	INIT	_	$t_{\text{CP}} \times 10$	_	ns	

Notes: • tcp is cycle time for CPU operation clock (CLKB).

• For power-on, input $\overline{\text{INIT}}$ = "L" more than regulator voltage stabilization wait time. If the oscillation stabilization wait time of used oscillator takes more time than regulator voltage stabilization wait time, input $\overline{\text{INIT}}$ = "L" until the oscillation is stable.


(4) UART Timing

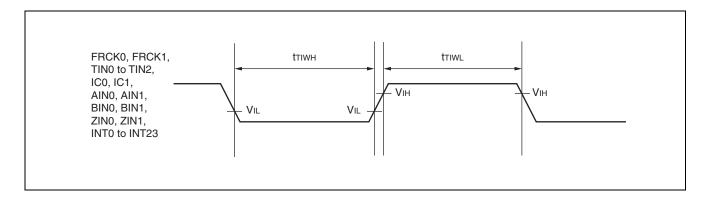
(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta = -40 $^{\circ}$ C to +85 $^{\circ}$ C)

Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
raiailletei	bol	Pili liaille	Conditions	Min	Max	Oilit
Serial clock cycle time	tscyc	SCK0 to SCK10		4 tcycp	_	ns
$SCK \downarrow \to SOT$ delay time	tsLov	SCK0 to SCK10, SOT0 to SOT10	Internal shift	- 20	+ 20	ns
Valid SIN → SCK ↑	tıvsн	SCK0 to SCK10, SIN0 to SIN10	clock operation	30	_	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıх	SCK0 to SCK10, SIN0 to SIN10		20	_	ns
Serial clock "H" pulse width	tshsl	SCK0 to SCK10		2 tcycp		ns
Serial clock "L" pulse width	tslsh	SCK0 to SCK10		2 tcycp	_	ns
$SCK \downarrow \to SOT$ delay time	tsLov	SCK0 to SCK10, SOT0 to SOT10	External shift clock	_	30	ns
Valid SIN → SCK ↑	tıvsн	SCK0 to SCK10, SIN0 to SIN10	operation	20	_	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	SCK0 to SCK10, SIN0 to SIN10		20	_	ns

Notes: • AC rating in CLK synchronous mode

• tcycp is the peripheral clock cycle time.

(5) Free-run timer clock, Reload timer event Input, up down counter Input, Input capture Input, Interrupt Input Timing

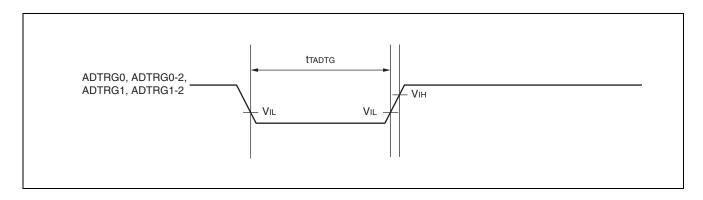

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta =
$$-40$$
 °C to $+85$ °C)

Parameter	Sym-	Pin name	Conditions	Va	lue	Unit	Remarks
raiametei	bol	Filitianie	Conditions	Min	Max	Oilit	nemarks
Input pulse width	tтіwн tтіwL	FRCK0, FRCK1, TIN0 to TIN2, IC0, IC1, AIN0, AIN1, BIN0, BIN1, ZIN0, ZIN1	_	tcycp × 2		ns	*1
		INT0 to INT23		$t_{\text{CYCP}} \times 3$		ns	*2
		11410 10 114123		1.0	_	μs	*3

*1: tcycp is cycle time for peripheral clock.

*2: Except in stop time

*3: In stop time



(6) A/D Converter Trigger Input Timing

 $(V_{CC} = AV_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, Ta = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

Parameter	Sym- Pin name		Conditions	Va	lue	Unit	Remarks
Parameter	bol	riii iiaiiie	Conditions	Min	Max	Oilit	nemarks
A/D converter trigger input (falling time)	t tadtg	ADTRG0, ADTRG0-2, ADTRG1, ADTRG1-2	_	tcycp × 2	_	ns	*

^{*:} tcycp is the peripheral clock cycle time.

(7) I²C timing

• At master mode operating

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta =
$$-40$$
 °C to $+85$ °C)

Parameter	Symbol	Pin	Conditions	Туріса	l mode	High-s	speed de*3	Unit	Remarks		
		name		Min	Max	Min	Max				
SCL clock frequency	fscL			0	100	0	400	kHz			
"L" period of SCL clock	tLOW			4.7	_	1.3	_	μs			
"H" period of SCL clock	tніgн			4.0	_	0.6	_	μs			
$SCL \downarrow \rightarrow SDA$ output delay time	t DLDAT				5 × M*1	_	5 × M*1	ns			
Bus free time between [STOP condition] and [START condition]	tвus	SDA0 to		4.7	_	1.3	_	μs			
SDA data input hold time (vs. SCL↓)	t hddat	SDA10, SCL0			$R = 1 k\Omega$ $C = 50 pF^{*4}$	2 × M*1	_	$2 \times M^{*1}$	_	μs	
SDA data input setup time (vs. SCL1)	t sudat	to SCL10	·	250	_	100*2	_	ns			
Setup time of [repeat START condition] SCL↑ → SDA↓	tsusta			4.7	_	0.6	_	μs			
Hold time of [repeat START condition] SDA $\downarrow \rightarrow$ SCL \downarrow	t HDSTA			4.0	_	0.6	_	μs	After that, the first clock pulse is generated.		
Setup time of [STOP condition] $SCL^{\uparrow} \rightarrow SDA^{\uparrow}$	tsusто			4.0		0.6	_	μs			

^{*1 :} M = Resource clock cycle (ns)

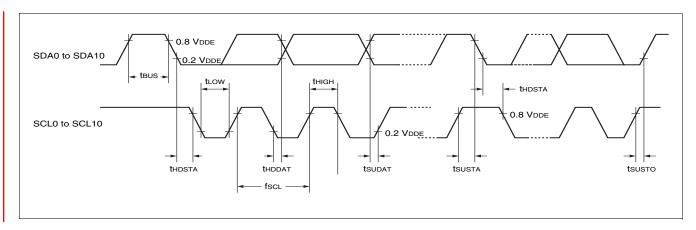
^{*2 :} A high-speed mode I²C bus device can be used for a typical mode I²C bus system as long as the device satisfies a requirement of "tsudat ≥ 250 ns".

When a device does not extend the "L" period of the SCL signal, the next data must be outputted to the SDA line within 1250 ns (maximum SDA/SCL rise time + tsudat) in which the SCL line is released.

^{*3:} For use at over 100 kHz, set the resource clock to at least 6 MHz.

^{*4:} R and C represent the pull-up resistor and load capacitor of the SCL and SDA output lines, respectively.

• At slave mode operating


(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta =
$$-40$$
 °C to $+85$ °C)

Parameter	Symbol	Pin name	Conditions	Typical mode		High-speed mode*3		Unit	Remarks
	-	Hallie		Min	Max	Min	Max		
SCL clock frequency	fscL			0	100	0	400	kHz	
"L" period of SCL clock	tLOW			4.7	_	1.3	_	μs	
"H" period of SCL clock	t HIGH			4.0	_	0.6	_	μs	
$\begin{array}{c} SCL \downarrow \to SDA \\ output \ delay \ time \end{array}$	t DLDAT		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 × M*1	ns				
Bus free time between [STOP condition and START condition]	tвus	SDA, SCL		4.7	_	1.3		μs	
SDA data input hold time (vs. SCL↓)	thddat			2 × M*1		μs			
SDA data input setup time (vs. SCL↑)	tsudat		$C = 50 \text{ pF}^{*4}$						
Setup time of [repeat START condition] SCL $\uparrow \rightarrow$ SDA \downarrow	t susta		4.7 — 0.6 4.0 — 0.6	0.6		μs			
Hold time of [repeat START condition] SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta				μs	After that, the first clock pulse is generated.			
Setup time of [STOP condition] SCL $\uparrow \rightarrow$ SDA \uparrow	tsusто			4.0	_	0.6		μs	

^{*1 :} M = Resource clock cycle (ns)

When the device does not extend the "L" period of the SCL signal, the next data must be outputted to the SDA line within 1250 ns (maximum SDA/SCL rise time + tsudat) in which the SCL line is released.

- *3: For use at over 100 kHz, set the resource clock to at least 6 MHz.
- *4 : R and C represent the pull-up resistor and load capacitor of the SCL and SDA output lines, respectively.

^{*2 :} A high-speed mode I^2C bus device can be used for a typical mode I^2C bus system as long as the device satisfies a requirement of "tsudat \geq 250 ns".

(8) Regulator Voltage Wait Time

 $(Vcc = AVcc = 3.0 \ \mbox{V to } 3.6 \ \mbox{V}, \ \mbox{Vss} = AVss = 0 \ \mbox{V}, \ \mbox{Ta} = -40 \ \mbox{°C to} \ \ +85 \ \mbox{°C})$

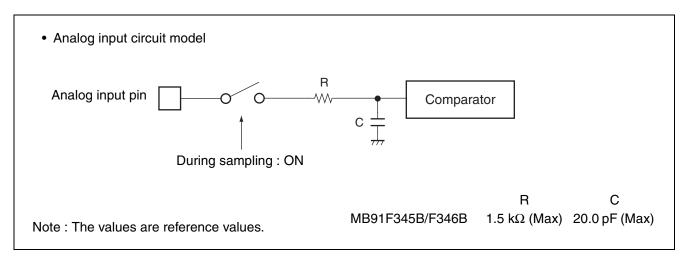
Parameter	Symbol	Va	lue	Unit	Remarks
raidilletei	Syllibol	Min	Max		nemarks
Regulator voltage wait time	treg	250	_	μs	Wait time until the regulator voltage is stable

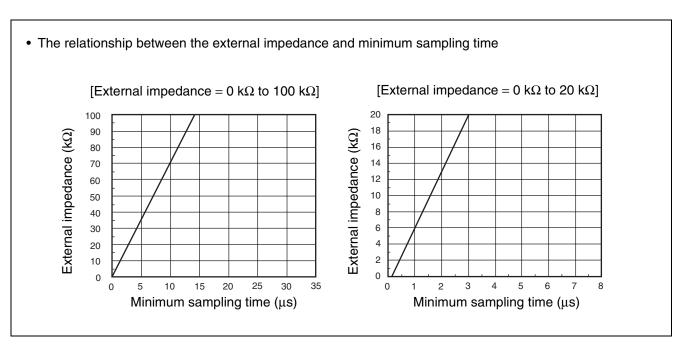
5. Electrical Characteristics for the A/D Converter

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, AVRH = 3.0 V to 3.6 V, Ta = -40 $^{\circ}$ C to +85 $^{\circ}$ C)

Dovemeter		Value	11!4	Damanila		
Parameter	Min Typ		Max	Unit	Remarks	
Resolution	_	_	10	bit		
Total error*1	-3.0	_	+3.0	LSB		
Nonlinear error*1	-2.5	_	+2.5	LSB		
Differential linear error*1	-1.9	_	+1.9	LSB	AVcc = 3.3 V, AVRH = 3.3 V	
Zero transition voltage*1	-1.5	+0.5	+2.5	LSB	7,101111 - 0.0 1	
Full transition voltage*1	AVRH-3.5	AVRH-1.5	AVRH+0.5	LSB	-	
Minimum comparison time*2	0.6	_	_	μs	Not including sampling time	
Minimum sampling time*2	0.3*3	_		μs		
Conversion time	0.9*3	1.1	_	μs		
Power supply current	_	7.2	_	mA	At operating A/D converter 2 units	
(analog + digital)	_	_	5	μΑ	At power down operation*4	
Reference power supply current (between AVRH and AVRL)	_	940	_	μА	At operating A/D converter 2 units AVRH = 3.0 V, AVRL = 0.0 V	
,	_	_	10	μΑ	At power down operation*4	
Analog input capacitance	_	_	20	pF		
Interchannel disparity	_	_	4	LSB		

^{*1 :} Measured in the CPU sleep state.


^{*2 :} Depends on the clock cycle supplied to the peripheral resource.


^{*3 :} No external load

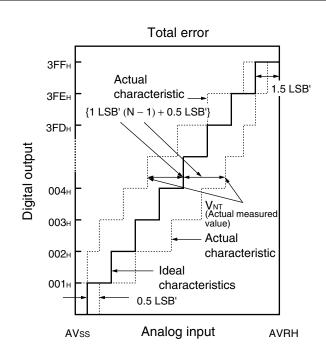
^{*4 :} Current when the A/D converter is not operating and the CPU is in stop mode

About the external impedance of the analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sampling and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

• A/D Converter Block Electrical Characteristics

- Resolution
 - Analog variations recognized by an A/D converter.
- · Linearity error

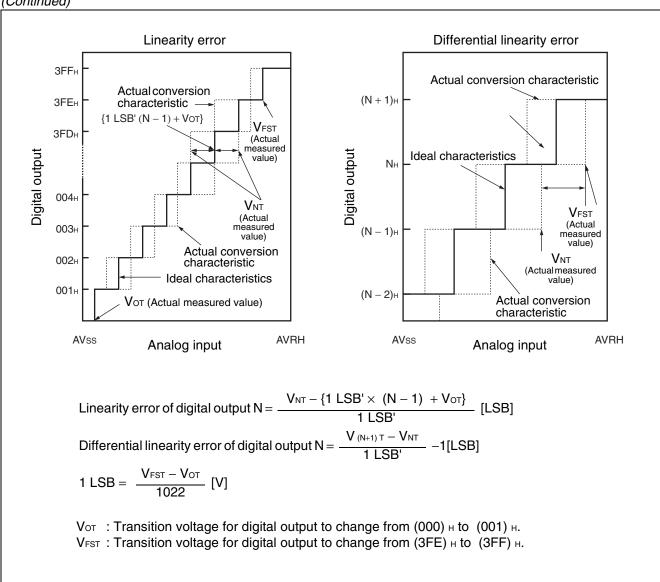

Deviation of actual conversion characteristics from an ideal line, which is across zero-transition point ("00 0000 0000" \longleftrightarrow "00 0000 0001") and full-scale transition point ("11 1111 1110" \longleftrightarrow "11 1111 1111").

• Differential linearity error

Deviation from ideal value of input voltage, which is required for changing output code by 1 LSB.

· Total error

Difference between actual value and ideal value. The error includes zero-transition error, full-scale transition error, and linearity error.



$$1 \ LSB' \ (ideal \ value) = \frac{AVRH - AV_{SS}}{1024} [V]$$
 Total error of digital output N =
$$\frac{V_{NT} - \{1 \ LSB' \times \ (N-1) \ + 0.5 \ LSB'\}}{1 \ LSB'}$$

 V_{NT} : Transition voltage for digital output to change from (N + 1) H to NH.

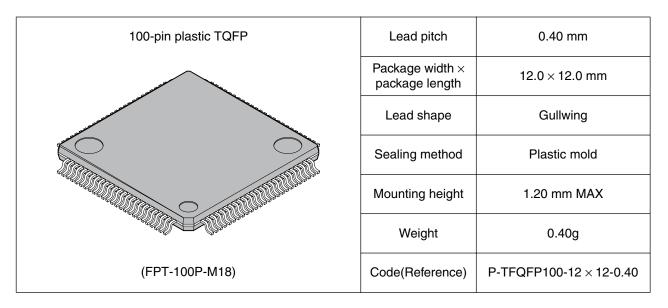
$$V_{\text{OT}'}$$
 (ideal value) = $AV_{\text{SS}} + 0.5 \text{ LSB'}[V]$
 $V_{\text{FST'}}$ (ideal value) = $AV_{\text{RH}} - 1.5 \text{ LSB'}[V]$

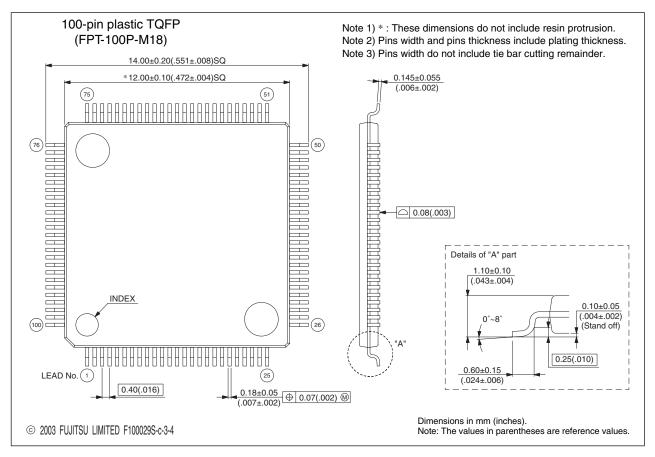
About errors

• As IAVRH – AVssl becomes smaller, values of relative errors grow larger.

6. Flash Memory Write/Erase Characteristics

(Vcc = AVcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, Ta = -40 °C to +85 °C)


Parameter	Conditions		Value		Unit	Remarks	
Parameter	Conditions	Min	Тур	Max	Oilit	Hemaiks	
Sector erase time	_	_	1	15	s	Excludes 00 _H programming prior erasure	
Byte write time	_	_	6	100	μs	Not including system-level overhead time	
Chip write time	_	_	3.4	56	s	Not including system-level overhead time	
Erase/write cycle	_	10000	_	_	cycle		
Flash memory data retain period	Average Ta = +55 °C	10	_	_	year	*	


 $^{^*}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 55 $^{\circ}$ C) .

■ ORDERING INFORMATION

Part number	Package			
MB91F345BPFT-GE1	100-pin plastic TQFP			
MB91F346BPFT-GE1	(FPT-100P-M18)			

■ PACKAGE DIMENSIONS



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
4	■ PIN ASSIGNMENT	Added the Example Characteristics pins of I ² C
5, 6, 8 to 11,	■ PIN DESCRIPTION	(SDA0 to SDA10,SCL0 to SCL10) .
23	■ BLOCK DIAGRAM	
42	■ I/O MAP Address 000420н to 00042Cн	"Register" is changed to "Port Function Registers".
	Address 000430 _H	"Register" is changed to "Reserved".
	Address 000440н to 00046Сн	"Interrupt control unit" is changed to "Interrupt Control Register".
43	Address 000500н to 000510н	"Port Pull-up Control Registers" is changed to "Pull-up Control Registers".
44	Address 0007FC _H	"—" is changed to "Mode Register".
46	Address 007020 _H	"Reserved" is changed to "Wild Register Enable Register".
60	 ELECTRICAL CHARACTERISTICS AC Characteristics I²C timing At slave mode operating 	Added the fugire of timing.

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.

151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.

10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.